Search Results

You are looking at 1 - 10 of 29 items for

  • Author or Editor: I.-I. Lin x
  • Refine by Access: All Content x
Clear All Modify Search
C. I. Lin
and
S. C. Lee

Abstract

No abstract available.

Full access
Yuh-Lang Lin
and
I-Chun Jao

Abstract

In this study, the authors have conducted a series of numerical experiments to investigate the flow circulations in the Central Valley of California and the formation mechanisms of the Fresno eddy. The authors have found the following:

  1. Under an adiabatic northwesterly, low–Froude number flow over the Central Valley, two cyclonic vortices form in the basin. One is located on the lee slope of the northern Coastal Range, while the other is located to the south of the San Joaquin Valley. The first may be identified as the Sacramento eddy, while the second may be identified as the Fresno eddy, although the Fresno eddy is located slightly farther to the south. The formation of the Sacramento eddy may be explained by either the generation of potential vorticity (Smith) or the generation of vorticity due to baroclinicity (Smolarkiewicz and Rotunno) on the lee slope in a low–Froude number flow. The Sacramento eddy may also be classified as a lee mesocylone since it is collocated with a lee mesolow (Lin et al.). In addition, a northwesterly jet forms at the gap of the Coastal Range due to the channeling effect.

  2. The Fresno eddy forms when the low–Froude number northwesterly flow meets the return flow from the Tehachapi Mountains in a rotating fluid system and is strengthened and expands farther to the north due to the effects of nocturnal radiative cooling. The northwesterly jet in the Central Valley, the southeasterly wind from the foothills of the Sierra Nevada, and the blocking effect due to the Tehachapi Mountains all play important roles in the formation of the Freano eddy. The Sacramento eddy moves eastward to the foothills of the Sierra Nevada, while the jet at the gap of the Coastal Range is suppressed when nocturnal radiative cooling is present.

  3. The nocturnal drainage flow over the western slope of the Sierra Nevada is weakened by the southerly return flow from the Tehachapi Mountains. The simulations indicate that in the absence of nocturnal radiative cooling the Fresno eddy still forms but is weaker and is located new the southern end of the San Joaquin Valley.

  4. The Fresno eddy will form in an environment characterized by low–Froude number northwesterly wind. Suitable incoming flow speed and direction are among the major factors in determining the formation and strength of the Fresno eddy.

  5. The return flow from the southern boundary of the San Joaquin Valley plays an important role in the formation of the Fresno eddy.

  6. The Fresno eddy does not form in the absence of planetary rotation.

  7. The β effect plays a negligible role in the formation of the Fresno eddy.

Full access
I-I. Lin
,
Iam-Fei Pun
, and
Chun-Chieh Wu

Abstract

Using new in situ ocean subsurface observations from the Argo floats, best-track typhoon data from the U.S. Joint Typhoon Warning Center, an ocean mixed layer model, and other supporting datasets, this work systematically explores the interrelationships between translation speed, the ocean’s subsurface condition [characterized by the depth of the 26°C isotherm (D26) and upper-ocean heat content (UOHC)], a cyclone’s self-induced ocean cooling negative feedback, and air–sea enthalpy fluxes for the intensification of the western North Pacific category 5 typhoons. Based on a 10-yr analysis, it is found that for intensification to category 5, in addition to the warm sea surface temperature generally around 29°C, the required subsurface D26 and UOHC depend greatly on a cyclone’s translation speed. It is observed that even over a relatively shallow subsurface warm layer of D26 ∼ 60–70 m and UOHC ∼ 65–70 kJ cm−2, it is still possible to have a sufficient enthalpy flux to intensify the storm to category 5, provided that the storm can be fast moving (typically Uh ∼ 7–8 m s−1). On the contrary, a much deeper subsurface layer is needed for slow-moving typhoons. For example at Uh ∼ 2–3 m s−1, D26 and UOHC are typically ∼115–140 m and ∼115–125 kJ cm−2, respectively. A new concept named the affordable minimum translation speed U h_min is proposed. This is the minimum required speed a storm needs to travel for its intensification to category 5, given the observed D26 and UOHC. Using more than 3000 Argo in situ profiles, a series of mixed layer numerical experiments are conducted to quantify the relationship between D26, UOHC, and U h_min. Clear negative linear relationships with correlation coefficients R = −0.87 (−0.71) are obtained as U h_min = −0.065 × D26 + 11.1, and U h_min = −0.05 × UOHC + 9.4, respectively. These relationships can thus be used as a guide to predict the minimum speed a storm has to travel at for intensification to category 5, given the observed D26 and UOHC.

Full access
Chun-Chieh Wu
,
Chia-Ying Lee
, and
I-I. Lin

Abstract

The rapid intensification of Hurricane Katrina followed by the devastation of the U.S. Gulf States highlights the critical role played by an upper-oceanic thermal structure (such as the ocean eddy or Loop Current) in affecting the development of tropical cyclones. In this paper, the impact of the ocean eddy on tropical cyclone intensity is investigated using a simple hurricane–ocean coupled model. Numerical experiments with different oceanic thermal structures are designed to elucidate the responses of tropical cyclones to the ocean eddy and the effects of tropical cyclones on the ocean. This simple model shows that rapid intensification occurs as a storm encounters the ocean eddy because of enhanced heat flux. While strong winds usually cause strong mixing in the mixed layer and thus cool down the sea surface, negative feedback to the storm intensity of this kind is limited by the presence of a warm ocean eddy, which provides an insulating effect against the storm-induced mixing and cooling.

Two eddy factors, F EDDY-S and F EDDY-T, are defined to evaluate the effect of the eddy on tropical cyclone intensity. The efficiency of the eddy feedback effect depends on both the oceanic structure and other environmental parameters, including properties of the tropical cyclone. Analysis of the functionality of F EDDY-T shows that the mixed layer depth associated with either the large-scale ocean or the eddy is the most important factor in determining the magnitude of eddy feedback effects. Next to them are the storm’s translation speed and the ambient relative humidity.

Full access
Yu-Hsuan Lin
,
Hen-I Lin
,
Fang-I Wen
, and
Sheng-Jang Sheu

Abstract

A better understanding of farmers’ investment strategies associated with climate and weather is crucial to protecting farming and other climate-exposed sectors from extreme hydrometeorological events. Accordingly, this study employed a field experiment to investigate the investment decisions under risk and uncertainty by 213 farmers from four regions of Taiwan. Each was asked 30 questions that paired “no investment,” “investment with crop insurance,” “investment with subsidized crop insurance,” and “investment” as possible responses. By providing imperfect information and various probabilities of certain states occurring, the experimental scenarios mimicked various types of weather-forecasting services. As well as their socioeconomic characteristics, the background information we collected about the participants included their experiences of natural disasters and what actions they take to protect their crops from weather damage. The sampled farmers became more conservative in their decision-making as the weather forecasts they received became more precise, except when increases in risk were associated with high returns. The provision of insurance subsidies also had a conservatizing effect. However, considerable variation in investment preferences was observed according to the farmers’ crop types. For those seeking to create comprehensive policies aimed at helping the agricultural sector deal with the costs of damage from extreme events, this study has important implications. This approach could be extended to research on the perceptions of decision-makers in other climate-exposed sectors such as the construction industry.

Full access
I-I. Lin
,
Chun-Chieh Wu
,
Iam-Fei Pun
, and
Dong-Shan Ko

Abstract

Category 5 cyclones are the most intense and devastating cyclones on earth. With increasing observations of category 5 cyclones, such as Hurricane Katrina (2005), Rita (2005), Mitch (1998), and Supertyphoon Maemi (2003) found to intensify on warm ocean features (i.e., regions of positive sea surface height anomalies detected by satellite altimeters), there is great interest in investigating the role ocean features play in the intensification of category 5 cyclones. Based on 13 yr of satellite altimetry data, in situ and climatological upper-ocean thermal structure data, best-track typhoon data of the U.S. Joint Typhoon Warning Center, together with an ocean mixed layer model, 30 western North Pacific category 5 typhoons that occurred during the typhoon season from 1993 to 2005 are systematically examined in this study.

Two different types of situations are found. The first type is the situation found in the western North Pacific south eddy zone (SEZ; 21°–26°N, 127°–170°E) and the Kuroshio (21°–30°N, 127°–170°E) region. In these regions, the background climatological warm layer is relatively shallow (typically the depth of the 26°C isotherm is around 60 m and the upper-ocean heat content is ∼50 kJ cm−2). Therefore passing over positive features is critical to meet the ocean’s part of necessary conditions in intensification because the features can effectively deepen the warm layer (depth of the 26°C isotherm reaching 100 m and upper-ocean heat content is ∼110 kJ cm−2) to restrain the typhoon’s self-induced ocean cooling. In the past 13 yr, 8 out of the 30 category 5 typhoons (i.e., 27%) belong to this situation.

The second type is the situation found in the gyre central region (10°–21°N, 121°–170°E) where the background climatological warm layer is deep (typically the depth of the 26°C isotherm is ∼105–120 m and the upper-ocean heat content is ∼80–120 kJ cm−2). In this deep, warm background, passing over positive features is not critical since the background itself is already sufficient to restrain the self-induced cooling negative feedback during intensification.

Full access
Werner Alpers
,
Jen-Ping Chen
,
Chia-Jung Pi
, and
I-I. Lin

Abstract

Frontal lines having offshore distances typically between 40 and 80 km are often visible on synthetic aperture radar (SAR) images acquired over the east coast of Taiwan by the European Remote Sensing Satellites 1 and 2 (ERS-1 and ERS-2) and Envisat. In a previous paper the authors showed that they are of atmospheric and not of oceanic origin; however, in that paper they did not give a definite answer to the question of which physical mechanism causes them. In this paper the authors present simulations carried out with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, which shows that the frontal lines are associated with a quasi-stationary low-level convergence zone generated by the dynamic interaction of onshore airflow of the synoptic-scale wind with the coastal mountain range of the island of Taiwan. Reversed airflow collides with the onshore-flowing air leading to an uplift of air, which is often accompanied by the formation of bands of increased cloud density and of rainbands. The physical mechanism causing the generation of the frontal lines is similar to the one responsible for the formation of cloud bands off the Island of Hawaii as described by Smolarkiewicz et al. Four SAR images are shown, one acquired by ERS-2 and three by Envisat, showing frontal lines at the east coast of Taiwan caused by this generation mechanism. For these events the recirculation pattern, as well as the frontal (or convective) lines observed, were reproduced quite well with the meteorological model. So, it is argued that the observed frontal lines are not seaward boundaries of (classical) barrier jets or of katabatic wind fields, which have characteristics that are quite different from the flow patterns around the east coast of Taiwan as indicated by the SAR images.

Full access
Werner Alpers
,
Jen-Ping Chen
,
I-I. Lin
, and
Chun-Chi Lien

Abstract

The existence of quasi-stationary alongshore atmospheric fronts typically located 30–70 km off the east coast of Taiwan is demonstrated by analyzing synthetic aperture radar (SAR) images of the sea surface acquired by the European Remote Sensing Satellites ERS-1 and ERS-2. For the data interpretation, cloud images from the Japanese Geostationary Meteorological Satellite GMS-4 and the American Terra satellite, rain-rate maps from ground-based weather radars, sea surface wind data from the scatterometer on board the Quick Scatterometer (QuikSCAT) satellite, and meteorological data from weather maps and radiosonde ascents have also been used. It is shown that these atmospheric fronts are generated by the collisions of the two airflows from opposing directions: one is associated with a weak easterly synoptic-scale wind blowing against the high coastal mountain range at the east coast of Taiwan and the other with a local offshore wind. At the convergence zone where both airflows collide, air is forced to move upward, which often gives rise to the formation of coast-parallel cloud bands. There are two hypotheses about the origin of the offshore wind. The first one is that it is a thermally driven land breeze/katabatic wind, and the second one is that it is wind resulting from recirculated airflow from the synoptic-scale onshore wind. Air blocked by the mountain range at low Froude numbers is recirculated and flows at low levels back offshore. Arguments in favor of and against the two hypotheses are presented. It is argued that both the recirculation of airflow and land breeze/katabatic wind contribute to the formation of the offshore atmospheric front but that land breeze/katabatic wind is probably the main cause.

Full access
Wei Mei
,
Chun-Chi Lien
,
I.-I. Lin
, and
Shang-Ping Xie

Abstract

The thermocline shoals in the South China Sea (SCS) relative to the tropical northwest Pacific Ocean (NWP), as required by geostrophic balance with the Kuroshio. The present study examines the effect of this difference in ocean state on the response of sea surface temperature (SST) and chlorophyll concentration to tropical cyclones (TCs), using both satellite-derived measurements and three-dimensional numerical simulations. In both regions, TC-produced SST cooling strongly depends on TC characteristics (including intensity as measured by the maximum surface wind speed, translation speed, and size). When subject to identical TC forcing, the SST cooling in the SCS is more than 1.5 times that in the NWP, which may partially explain weaker TC intensity on average observed in the SCS. Both a shallower mixed layer and stronger subsurface thermal stratification in the SCS contribute to this regional difference in SST cooling. The mixed layer effect dominates when TCs are weak, fast-moving, and/or small; and for strong and slow-moving TCs or strong and large TCs, both factors are equally important.

In both regions, TCs tend to elevate surface chlorophyll concentration. For identical TC forcing, the surface chlorophyll increase in the SCS is around 10 times that in the NWP, a difference much stronger than that in SST cooling. This large regional difference in the surface chlorophyll response is at least partially due to a shallower nutricline and stronger vertical nutrient gradient in the SCS. The effect of regional difference in upper-ocean density stratification on the surface nutrient response is negligible. The total annual primary production increase associated with the TC passage estimated using the vertically generalized production model in the SCS is nearly 3 times that in the NWP (i.e., 6.4 ± 0.4 × 1012 versus 2.2 ± 0.2 × 1012 g C), despite the weaker TC activity in the SCS.

Full access
Iam-Fei Pun
,
I.-I. Lin
,
Chun-Chi Lien
, and
Chun-Chieh Wu

Abstract

Supertyphoon Megi (2010) left behind two very contrasting SST cold-wake cooling patterns between the Philippine Sea (1.5°C) and the South China Sea (7°C). Based on various radii of radial winds, the authors found that the size of Megi doubles over the South China Sea when it curves northward. On average, the radius of maximum wind (RMW) increased from 18.8 km over the Philippine Sea to 43.1 km over the South China Sea; the radius of 64-kt (33 m s−1) typhoon-force wind (R64) increased from 52.6 to 119.7 km; the radius of 50-kt (25.7 m s−1) damaging-force wind (R50) increased from 91.8 to 210 km; and the radius of 34-kt (17.5 m s−1) gale-force wind (R34) increased from 162.3 to 358.5 km. To investigate the typhoon size effect, the authors conduct a series of numerical experiments on Megi-induced SST cooling by keeping other factors unchanged, that is, typhoon translation speed and ocean subsurface thermal structure. The results show that if it were not for Megi’s size increase over the South China Sea, the during-Megi SST cooling magnitude would have been 52% less (reduced from 4° to 1.9°C), the right bias in cooling would have been 60% (or 30 km) less, and the width of the cooling would have been 61% (or 52 km) less, suggesting that typhoon size is as important as other well-known factors on SST cooling. Aside from the size effect, the authors also conduct a straight-track experiment and find that the curvature of Megi contributes up to 30% (or 1.2°C) of cooling over the South China Sea.

Full access