Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Ian B. McCubbin x
  • Refine by Access: All Content x
Clear All Modify Search
A. Gannet Hallar, Ian B. McCubbin, and Jennifer M. Wright

Curriculum in High Altitude Environments for Teaching Global Climate Change Education (CHANGE) uses place-based education to teach middle school students about meteorology and climate as a basis to improve climate science literacy. The curriculum provides in-school and out-of-school instruction and connects students with scientists at Storm Peak Laboratory, a high-elevation atmospheric research facility above Steamboat Springs, Colorado. Following an initial 2-h classroom lesson, students record their own measurements of temperature, pressure, wind speed, and particle concentrations while traveling up the mountain to Storm Peak Laboratory. After returning to the classroom, students graph these data and analyze their results. Evaluation of this program showed that students improved their knowledge of key concepts pertaining to climate literacy. The hands-on, place-based format of CHANGE can be used as a model for middle school students in alpine communities to teach lessons in weather and climate and can be further refined by improved lesson plans, increased feedback to students, and an independent evaluation.

Full access
Sergey Y. Matrosov, Gerald G. Mace, Roger Marchand, Matthew D. Shupe, Anna G. Hallar, and Ian B. McCubbin

Abstract

Scanning polarimetric W-band radar data were evaluated for the purpose of identifying predominant ice hydrometeor habits. Radar and accompanying cloud microphysical measurements were conducted during the Storm Peak Laboratory Cloud Property Validation Experiment held in Steamboat Springs, Colorado, during the winter season of 2010/11. The observed ice hydrometeor habits ranged from pristine and rimed dendrites/stellars to aggregates, irregulars, graupel, columns, plates, and particle mixtures. The slant 45° linear depolarization ratio (SLDR) trends as a function of the radar elevation angle are indicative of the predominant hydrometeor habit/shape. For planar particles, SLDR values increase from values close to the radar polarization cross coupling of about −21.8 dB at zenith viewing to maximum values at slant viewing. These maximum values depend on predominant aspect ratio and bulk density of hydrometeors and also show some sensitivity to particle characteristic size. The highest observed SLDRs were around −8 dB for pristine dendrites. Unlike planar-type hydrometeors, columnar-type particles did not exhibit pronounced depolarization trends as a function of viewing direction. A difference in measured SLDR values between zenith and slant viewing can be used to infer predominant aspect ratios of planar hydrometeors if an assumption about their bulk density is made. For columnar hydrometeors, SLDR offsets from the cross-coupling value are indicative of aspect ratios. Experimental data were analyzed for a number of events with prevalence of planar-type hydrometeors and also for observations when columnar particles were the dominant species. A relatively simple spheroidal model and accompanying T-matrix calculations were able to approximate most radar depolarization changes with viewing angle observed for different hydrometeor types.

Full access
Roger Marchand, Gerald G. Mace, A. Gannet Hallar, Ian B. McCubbin, Sergey Y. Matrosov, and Matthew D. Shupe

Abstract

Nonspherical atmospheric ice particles can enhance radar backscattering and attenuation above that expected from spheres of the same mass. An analysis of scanning 95-GHz radar data collected during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) shows that at a least a small amount of enhanced backscattering was present in most radar scans, with a median enhancement of 2.4 dB at zenith. This enhancement will cause an error (bias) in ice water content (IWC) retrievals that neglect particle orientation, with a value of 2.4 dB being roughly equivalent to a relative error in IWC of 43%. Of the radar scans examined, 25% had a zenith-enhanced backscattering exceeding 3.5 dB (equivalent to a relative error in IWC in excess of 67%) and 10% of the scans had a zenith-enhanced backscattering exceeding 6.4 dB (equivalent to a relative error in IWC in excess of 150%). Cloud particle images indicate that large enhancement typically occurred when planar crystals (e.g., plates and dendrites) were present, with the largest enhancement occurring when large planar crystals were falling out of a supercooled liquid-water layer. More modest enhancement was sometimes due to planar crystals, but it was also sometimes likely a result of horizontally oriented nonspherical irregularly shaped particles. The analysis also shows there is a strong correlation (about −0.79) between the change in slant 45° depolarization ratio with radar scan elevation angle and the magnitude of the zenith-enhanced backscattering, suggesting that measurements of the slant depolarization ratio can be used to improve radar-based cloud microphysical property retrievals.

Full access
Elisabeth Andrews, Patrick J. Sheridan, John A. Ogren, Derek Hageman, Anne Jefferson, Jim Wendell, Andrés Alástuey, Lucas Alados-Arboledas, Michael Bergin, Marina Ealo, A. Gannet Hallar, András Hoffer, Ivo Kalapov, Melita Keywood, Jeongeun Kim, Sang-Woo Kim, Felicia Kolonjari, Casper Labuschagne, Neng-Huei Lin, AnneMarie Macdonald, Olga L. Mayol-Bracero, Ian B. McCubbin, Marco Pandolfi, Fabienne Reisen, Sangeeta Sharma, James P. Sherman, Mar Sorribas, and Junying Sun

Abstract

To estimate global aerosol radiative forcing, measurements of aerosol optical properties are made by the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL)’s Global Monitoring Division (GMD) and their collaborators at 30 monitoring locations around the world. Many of the sites are located in regions influenced by specific aerosol types (Asian and Saharan desert dust, Asian pollution, biomass burning, etc.). This network of monitoring stations is a shared endeavor of NOAA and many collaborating organizations, including the World Meteorological Organization (WMO)’s Global Atmosphere Watch (GAW) program, the U.S. Department of Energy (DOE), several U.S. and foreign universities, and foreign science organizations. The result is a long-term cooperative program making atmospheric measurements that are directly comparable with those from all the other network stations and with shared data access. The protocols and software developed to support the program facilitate participation in GAW’s atmospheric observation strategy, and the sites in the NOAA/ESRL network make up a substantial subset of the GAW aerosol observations. This paper describes the history of the NOAA/ESRL Federated Aerosol Network, details about measurements and operations, and some recent findings from the network measurements.

Open access
Britton B. Stephens, Matthew C. Long, Ralph F. Keeling, Eric A. Kort, Colm Sweeney, Eric C. Apel, Elliot L. Atlas, Stuart Beaton, Jonathan D. Bent, Nicola J. Blake, James F. Bresch, Joanna Casey, Bruce C. Daube, Minghui Diao, Ernesto Diaz, Heidi Dierssen, Valeria Donets, Bo-Cai Gao, Michelle Gierach, Robert Green, Justin Haag, Matthew Hayman, Alan J. Hills, Martín S. Hoecker-Martínez, Shawn B. Honomichl, Rebecca S. Hornbrook, Jorgen B. Jensen, Rong-Rong Li, Ian McCubbin, Kathryn McKain, Eric J. Morgan, Scott Nolte, Jordan G. Powers, Bryan Rainwater, Kaylan Randolph, Mike Reeves, Sue M. Schauffler, Katherine Smith, Mackenzie Smith, Jeff Stith, Gregory Stossmeister, Darin W. Toohey, and Andrew S. Watt

Abstract

The Southern Ocean plays a critical role in the global climate system by mediating atmosphere–ocean partitioning of heat and carbon dioxide. However, Earth system models are demonstrably deficient in the Southern Ocean, leading to large uncertainties in future air–sea CO2 flux projections under climate warming and incomplete interpretations of natural variability on interannual to geologic time scales. Here, we describe a recent aircraft observational campaign, the O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) study, which collected measurements over the Southern Ocean during January and February 2016. The primary research objective of the ORCAS campaign was to improve observational constraints on the seasonal exchange of atmospheric carbon dioxide and oxygen with the Southern Ocean. The campaign also included measurements of anthropogenic and marine biogenic reactive gases; high-resolution, hyperspectral ocean color imaging of the ocean surface; and microphysical data relevant for understanding and modeling cloud processes. In each of these components of the ORCAS project, the campaign has significantly expanded the amount of observational data available for this remote region. Ongoing research based on these observations will contribute to advancing our understanding of this climatically important system across a range of topics including carbon cycling, atmospheric chemistry and transport, and cloud physics. This article presents an overview of the scientific and methodological aspects of the ORCAS project and highlights early findings.

Open access