Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Ian Turner x
  • Refine by Access: All Content x
Clear All Modify Search
Wayne M. Angevine, Joseph Olson, Jake J. Gristey, Ian Glenn, Graham Feingold, and David D. Turner

Abstract

Proper behavior of physics parameterizations in numerical models at grid sizes of order 1 km is a topic of current research. Modifications to parameterization schemes to accommodate varying grid sizes are termed “scale aware.” The general problem of grids on which a physical process is partially resolved is called the “gray zone” or “terra incognita.” Here we examine features of the Mellor–Yamada–Nakanishi–Niino (MYNN) boundary layer scheme with eddy diffusivity and mass flux (EDMF) that were intended to provide scale awareness, as implemented in WRF, version 4.1. Scale awareness is provided by reducing the intensity of nonlocal components of the vertical mixing in the scheme as the grid size decreases. However, we find that the scale-aware features cause poorer performance in our tests on a 600-m grid. The resolved circulations on the 600-m grid have different temporal and spatial scales than are found in large-eddy simulations of the same cases, for reasons that are well understood theoretically and are described in the literature. The circulations [model convectively induced secondary circulations (M-CISCs)] depend on the grid size and on details of the model numerics. We conclude that scale awareness should be based on effective resolution, and not on grid size, and that the gray-zone problem for boundary layer turbulence and shallow cumulus cannot be solved simply by reducing the intensity of the parameterization. Parameterizations with different characteristics may lead to different conclusions.

Free access
John Turner, David Bromwich, Steven Colwell, Stephen Dixon, Tim Gibson, Terry Hart, Günther Heinemann, Hugh Hutchinson, Kieran Jacka, Steven Leonard, Michael Lieder, Lawrie Marsh, Stephen Pendlebury, Henry Phillpot, Mike Pook, and Ian Simmonds

An account is given of the Antarctic First Regional Observing Study of the Troposphere (FROST) project, which has been organized by the Physics and Chemistry of the Atmosphere Group of the Scientific Committee on Antarctic Research. The goals of FROST are to study the meteorology of the Antarctic, to determine the strengths and weaknesses of operational analyses and forecasts over the continent and in the surrounding ocean areas, and to assess the value of new forms of satellite data that are becoming available. FROST is based around three one-month Special Observing Periods (SOPs)—July 1994, 16 October–15 November 1994, and January 1995 for which comprehensive datasets have been established of model fields and in situ and satellite observations. High quality manual surface and upper-air analyses are being prepared for these periods to determine the extent to which non–Global Telecommunications System data can improve the interpretation of the synoptic situation. Over the ocean areas during SOP-1, incorporation of the late data resulted only in a limited improvement in the analyses, indicating that the models are correctly analyzing most of the major weather systems. Over the continent, the production of 500-hPa heights from the automatic weather station data greatly helped in the analysis process. The lack of data around west Antarctica was a major handicap in the analysis process. The rms errors in the forecasts of 500-hPa height for the Antarctic were about 20% greater than those for midlatitude areas. The forecasts from the European Centre for Medium-Range Weather Forecasts were the most accurate of those received.

Full access
Gijs de Boer, Mark Ivey, Beat Schmid, Dale Lawrence, Darielle Dexheimer, Fan Mei, John Hubbe, Albert Bendure, Jasper Hardesty, Matthew D. Shupe, Allison McComiskey, Hagen Telg, Carl Schmitt, Sergey Y. Matrosov, Ian Brooks, Jessie Creamean, Amy Solomon, David D. Turner, Christopher Williams, Maximilian Maahn, Brian Argrow, Scott Palo, Charles N. Long, Ru-Shan Gao, and James Mather

Abstract

Thorough understanding of aerosols, clouds, boundary layer structure, and radiation is required to improve the representation of the Arctic atmosphere in weather forecasting and climate models. To develop such understanding, new perspectives are needed to provide details on the vertical structure and spatial variability of key atmospheric properties, along with information over difficult-to-reach surfaces such as newly forming sea ice. Over the last three years, the U.S. Department of Energy (DOE) has supported various flight campaigns using unmanned aircraft systems [UASs, also known as unmanned aerial vehicles (UAVs) and drones] and tethered balloon systems (TBSs) at Oliktok Point, Alaska. These activities have featured in situ measurements of the thermodynamic state, turbulence, radiation, aerosol properties, cloud microphysics, and turbulent fluxes to provide a detailed characterization of the lower atmosphere. Alongside a suite of active and passive ground-based sensors and radiosondes deployed by the DOE Atmospheric Radiation Measurement (ARM) program through the third ARM Mobile Facility (AMF-3), these flight activities demonstrate the ability of such platforms to provide critically needed information. In addition to providing new and unique datasets, lessons learned during initial campaigns have assisted in the development of an exciting new community resource.

Open access
Diana Greenslade, Mark Hemer, Alex Babanin, Ryan Lowe, Ian Turner, Hannah Power, Ian Young, Daniel Ierodiaconou, Greg Hibbert, Greg Williams, Saima Aijaz, João Albuquerque, Stewart Allen, Michael Banner, Paul Branson, Steve Buchan, Andrew Burton, John Bye, Nick Cartwright, Amin Chabchoub, Frank Colberg, Stephanie Contardo, Francois Dufois, Craig Earl-Spurr, David Farr, Ian Goodwin, Jim Gunson, Jeff Hansen, David Hanslow, Mitchell Harley, Yasha Hetzel, Ron Hoeke, Nicole Jones, Michael Kinsela, Qingxiang Liu, Oleg Makarynskyy, Hayden Marcollo, Said Mazaheri, Jason McConochie, Grant Millar, Tim Moltmann, Neal Moodie, Joao Morim, Russel Morison, Jana Orszaghova, Charitha Pattiaratchi, Andrew Pomeroy, Roger Proctor, David Provis, Ruth Reef, Dirk Rijnsdorp, Martin Rutherford, Eric Schulz, Jake Shayer, Kristen Splinter, Craig Steinberg, Darrell Strauss, Greg Stuart, Graham Symonds, Karina Tarbath, Daniel Taylor, James Taylor, Darshani Thotagamuwage, Alessandro Toffoli, Alireza Valizadeh, Jonathan van Hazel, Guilherme Vieira da Silva, Moritz Wandres, Colin Whittaker, David Williams, Gundula Winter, Jiangtao Xu, Aihong Zhong, and Stefan Zieger
Full access
Diana Greenslade, Mark Hemer, Alex Babanin, Ryan Lowe, Ian Turner, Hannah Power, Ian Young, Daniel Ierodiaconou, Greg Hibbert, Greg Williams, Saima Aijaz, João Albuquerque, Stewart Allen, Michael Banner, Paul Branson, Steve Buchan, Andrew Burton, John Bye, Nick Cartwright, Amin Chabchoub, Frank Colberg, Stephanie Contardo, Francois Dufois, Craig Earl-Spurr, David Farr, Ian Goodwin, Jim Gunson, Jeff Hansen, David Hanslow, Mitchell Harley, Yasha Hetzel, Ron Hoeke, Nicole Jones, Michael Kinsela, Qingxiang Liu, Oleg Makarynskyy, Hayden Marcollo, Said Mazaheri, Jason McConochie, Grant Millar, Tim Moltmann, Neal Moodie, Joao Morim, Russel Morison, Jana Orszaghova, Charitha Pattiaratchi, Andrew Pomeroy, Roger Proctor, David Provis, Ruth Reef, Dirk Rijnsdorp, Martin Rutherford, Eric Schulz, Jake Shayer, Kristen Splinter, Craig Steinberg, Darrell Strauss, Greg Stuart, Graham Symonds, Karina Tarbath, Daniel Taylor, James Taylor, Darshani Thotagamuwage, Alessandro Toffoli, Alireza Valizadeh, Jonathan van Hazel, Guilherme Vieira da Silva, Moritz Wandres, Colin Whittaker, David Williams, Gundula Winter, Jiangtao Xu, Aihong Zhong, and Stefan Zieger

Abstract

The Australian marine research, industry, and stakeholder community has recently undertaken an extensive collaborative process to identify the highest national priorities for wind-waves research. This was undertaken under the auspices of the Forum for Operational Oceanography Surface Waves Working Group. The main steps in the process were first, soliciting possible research questions from the community via an online survey; second, reviewing the questions at a face-to-face workshop; and third, online ranking of the research questions by individuals. This process resulted in 15 identified priorities, covering research activities and the development of infrastructure. The top five priorities are 1) enhanced and updated nearshore and coastal bathymetry; 2) improved understanding of extreme sea states; 3) maintain and enhance the in situ buoy network; 4) improved data access and sharing; and 5) ensemble and probabilistic wave modeling and forecasting. In this paper, each of the 15 priorities is discussed in detail, providing insight into why each priority is important, and the current state of the art, both nationally and internationally, where relevant. While this process has been driven by Australian needs, it is likely that the results will be relevant to other marine-focused nations.

Free access