Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Igor V. Polyakov x
  • All content x
Clear All Modify Search
Roman V. Bekryaev, Igor V. Polyakov, and Vladimir A. Alexeev

Abstract

This study uses an extensive dataset of monthly surface air temperature (SAT) records (including previously unutilized) from high-latitude (>60°N) meteorological land stations. Most records have been updated by very recent observations (up to December 2008). Using these data, a high-latitude warming rate of 1.36°C century−1 is documented for 1875–2008—the trend is almost 2 times stronger than the Northern Hemisphere trend (0.79°C century−1), with an accelerated warming rate in the most recent decade (1.35°C decade−1). Stronger warming in high-latitude regions is a manifestation of polar amplification (PA). Changes in SAT suggest two spatial scales of PA—hemispheric and local. A new stable statistical measure of PA linking high-latitude and hemispheric temperature anomalies via a regression relationship is proposed. For 1875–2008, this measure yields PA of ∼1.62. Local PA related to the ice–albedo feedback mechanisms is autumnal and coastal, extending several hundred kilometers inland. Heat budget estimates suggest that a recent reduction of arctic ice and anomalously high SATs cannot be explained by ice–albedo feedback mechanisms alone, and the role of large-scale mechanisms of PA of global warming should not be overlooked.

Full access
Igor V. Polyakov, Andrey V. Pnyushkov, and Leonid A. Timokhov

Abstract

This analysis evaluates the thermal state of the intermediate (depth range of 150–900 m) Atlantic Water (AW) of the Arctic Ocean, beginning in the 1950s and with particular focus on the transition from the 1990s to the 2000s and on changes during the 2000s. Using an extensive array of observations, the authors document AW warming trends across various time scales and demonstrate that the 2000s were exceptionally warm, with no analogy since the 1950s or probably in the history of instrumental observations in the Arctic Ocean. Warming in the recent decade was dominated by a warm AW pulse in addition to the underlying trend. Since 1997, the Canadian Basin experienced a faster warming rate compared with the Eurasian Basin. The relative role of the AW warmth in setting the net energy flux and mass balance of the Arctic sea ice is still under debate. Additional carefully orchestrated field experiments are required in order to address this question of ongoing Arctic climate change.

Full access
Igor V. Polyakov, John E. Walsh, and Ronald Kwok

No abstract available.

Full access
Igor V. Polyakov, Laurie Padman, Y.-D. Lenn, Andrey Pnyushkov, Robert Rember, and Vladimir V. Ivanov

Abstract

The diffusive layering (DL) form of double-diffusive convection cools the Atlantic Water (AW) as it circulates around the Arctic Ocean. Large DL steps, with heights of homogeneous layers often greater than 10 m, have been found above the AW core in the Eurasian Basin (EB) of the eastern Arctic. Within these DL staircases, heat and salt fluxes are determined by the mechanisms for vertical transport through the high-gradient regions (HGRs) between the homogeneous layers. These HGRs can be thick (up to 5 m and more) and are frequently complex, being composed of multiple small steps or continuous stratification. Microstructure data collected in the EB in 2007 and 2008 are used to estimate heat fluxes through large steps in three ways: using the measured dissipation rate in the large homogeneous layers; utilizing empirical flux laws based on the density ratio and temperature step across HGRs after scaling to account for the presence of multiple small DL interfaces within each HGR; and averaging estimates of heat fluxes computed separately for individual small interfaces (as laminar conductive fluxes), small convective layers (via dissipation rates within small DL layers), and turbulent patches (using dissipation rate and buoyancy) within each HGR. Diapycnal heat fluxes through HGRs evaluated by each method agree with each other and range from ~2 to ~8 W m−2, with an average flux of ~3–4 W m−2. These large fluxes confirm a critical role for the DL instability in cooling and thickening the AW layer as it circulates around the eastern Arctic Ocean.

Open access
Igor V. Polyakov, Andrey V. Pnyushkov, Robert Rember, Laurie Padman, Eddy C. Carmack, and Jennifer M. Jackson

Abstract

A 1-yr (2009/10) record of temperature and salinity profiles from Ice-Tethered Profiler (ITP) buoys in the Eurasian Basin (EB) of the Arctic Ocean is used to quantify the flux of heat from the upper pycnocline to the surface mixed layer. The upper pycnocline in the central EB is fed by the upward flux of heat from the intermediate-depth (~150–900 m) Atlantic Water (AW) layer; this flux is estimated to be ~1 W m−2 averaged over one year. Release of heat from the upper pycnocline, through the cold halocline layer to the surface mixed layer is, however, seasonally intensified, occurring more strongly in winter. This seasonal heat loss averages ~3–4 W m−2 between January and April, reducing the rate of winter sea ice formation. This study hypothesizes that the winter heat loss is driven by mixing caused by a combination of brine-driven convection associated with sea ice formation and larger vertical velocity shear below the base of the surface mixed layer (SML), enhanced by atmospheric storms and the seasonal reduction in density difference between the SML and underlying pycnocline.

Full access
Igor V. Polyakov, Andrey V. Pnyushkov, Robert Rember, Vladimir V. Ivanov, Y.-D. Lenn, Laurie Padman, and Eddy C. Carmack

Abstract

A yearlong time series from mooring-based high-resolution profiles of water temperature and salinity from the Laptev Sea slope (2003–04; 2686-m depth; 78°26′N, 125°37′E) shows six remarkably persistent staircase layers in the depth range of ~140–350 m encompassing the upper Atlantic Water (AW) and lower halocline. Despite frequent displacement of isopycnal surfaces by internal waves and eddies and two strong AW warming pulses that passed through the mooring location in February and late August 2004, the layers preserved their properties. Using laboratory-derived flux laws for diffusive convection, the authors estimate the time-averaged diapycnal heat fluxes across the four shallower layers overlying the AW core to be ~8 W m−2. Temporal variability of these fluxes is strong, with standard deviations of ~3–7 W m−2. These fluxes provide a means for effective transfer of AW heat upward over more than a 100-m depth range toward the upper halocline. These findings suggest that double diffusion is an important mechanism influencing the oceanic heat fluxes that help determine the state of Arctic sea ice.

Full access
Igor V. Polyakov, Genrikh V. Alekseev, Roman V. Bekryaev, Uma S. Bhatt, Roger Colony, Mark A. Johnson, Valerii P. Karklin, David Walsh, and Alexander V. Yulin

Abstract

Examination of records of fast ice thickness (1936–2000) and ice extent (1900–2000) in the Kara, Laptev, East Siberian, and Chukchi Seas provide evidence that long-term ice thickness and extent trends are small and generally not statistically significant, while trends for shorter records are not indicative of the long-term tendencies due to large-amplitude low-frequency variability. The ice variability in these seas is dominated by a multidecadal, low-frequency oscillation (LFO) and (to a lesser degree) by higher-frequency decadal fluctuations. The LFO signal decays eastward from the Kara Sea where it is strongest. In the Chukchi Sea ice variability is dominated by decadal fluctuations, and there is no evidence of the LFO. This spatial pattern is consistent with the air temperature–North Atlantic Oscillation (NAO) index correlation pattern, with maximum correlation in the near-Atlantic region, which decays toward the North Pacific. Sensitivity analysis shows that dynamical forcing (wind or surface currents) dominates ice-extent variations in the Laptev, East Siberian, and Chukchi Seas. Variability of Kara Sea ice extent is governed primarily by thermodynamic factors.

Full access
Igor V. Polyakov, Roman V. Bekryaev, Genrikh V. Alekseev, Uma S. Bhatt, Roger L. Colony, Mark A. Johnson, Alexander P. Maskshtas, and David Walsh

Abstract

Arctic atmospheric variability during the industrial era (1875–2000) is assessed using spatially averaged surface air temperature (SAT) and sea level pressure (SLP) records. Air temperature and pressure display strong multidecadal variability on timescales of 50–80 yr [termed low-frequency oscillation (LFO)]. Associated with this variability, the Arctic SAT record shows two maxima: in the 1930s–40s and in recent decades, with two colder periods in between. In contrast to the global and hemispheric temperature, the maritime Arctic temperature was higher in the late 1930s through the early 1940s than in the 1990s. Incomplete sampling of large-amplitude multidecadal fluctuations results in oscillatory Arctic SAT trends. For example, the Arctic SAT trend since 1875 is 0.09 ± 0.03°C decade−1, with stronger spring- and wintertime warming; during the twentieth century (when positive and negative phases of the LFO nearly offset each other) the Arctic temperature increase is 0.05 ± 0.04°C decade−1, similar to the Northern Hemispheric trend (0.06°C decade−1). Thus, the large-amplitude multidecadal climate variability impacting the maritime Arctic may confound the detection of the true underlying climate trend over the past century. LFO-modulated trends for short records are not indicative of the long-term behavior of the Arctic climate system. The accelerated warming and a shift of the atmospheric pressure pattern from anticyclonic to cyclonic in recent decades can be attributed to a positive LFO phase. It is speculated that this LFO-driven shift was crucial to the recent reduction in Arctic ice cover. Joint examination of air temperature and pressure records suggests that peaks in temperature associated with the LFO follow pressure minima after 5–15 yr. Elucidating the mechanisms behind this relationship will be critical to understanding the complex nature of low-frequency variability.

Full access
Till M. Baumann, Igor V. Polyakov, Andrey V. Pnyushkov, Robert Rember, Vladimir V. Ivanov, Matthew B. Alkire, Ilona Goszczko, and Eddy C. Carmack

Abstract

The Eurasian Basin (EB) of the Arctic Ocean is subject to substantial seasonality. We here use data collected between 2013 and 2015 from six moorings across the continental slope in the eastern EB and identify three domains, each with its own unique seasonal cycle: 1) The upper ocean (<100 m), with seasonal temperature and salinity differences of Δθ = 0.16°C and ΔS = 0.17, is chiefly driven by the seasonal sea ice cycle. 2) The upper-slope domain is characterized by the influence of a hydrographic front that spans the water column around the ~750-m isobath. The domain features a strong temperature and moderate salinity seasonality (Δθ = 1.4°C; ΔS = 0.06), which is traceable down to ~600-m depth. Probable cause of this signal is a combination of along-slope advection of signals by the Arctic Circumpolar Boundary Current, local wind-driven upwelling, and a cross-slope shift of the front. 3) The lower-slope domain, located offshore of the front, with seasonality in temperature and salinity mainly confined to the halocline (Δθ = 0.83°C; ΔS = 0.11; ~100–200 m). This seasonal cycle can be explained by a vertical isopycnal displacement (ΔZ ~ 36 m), arguably as a baroclinic response to sea level changes. Available long-term oceanographic records indicate a recent amplification of the seasonal cycle within the halocline layer, possibly associated with the erosion of the halocline. This reduces the halocline’s ability to isolate the ocean surface layer and sea ice from the underlying Atlantic Water heat with direct implications for the evolution of Arctic sea ice cover and climate.

Open access
Igor V. Polyakov, Tom P. Rippeth, Ilker Fer, Matthew B. Alkire, Till M. Baumann, Eddy C. Carmack, Randi Ingvaldsen, Vladimir V. Ivanov, Markus Janout, Sigrid Lind, Laurie Padman, Andrey V. Pnyushkov, and Robert Rember

Abstract

A 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m−2 in 2007–08 to >10 W m−2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback.

Open access