Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Isadora Christel x
  • Refine by Access: All Content x
Clear All Modify Search
Marta Terrado
,
Luz Calvo
,
Dragana Bojovic
, and
Isadora Christel
Full access
Luz Calvo
,
Isadora Christel
,
Marta Terrado
,
Fernando Cucchietti
, and
Mario Pérez-Montoro

Abstract

The visual communication of climate information is one of the cornerstones of climate services. It often requires the translation of multidimensional data to visual channels by combining colors, distances, angles, and glyph sizes. However, visualizations including too many layers of complexity can hinder decision-making processes by limiting the cognitive capacity of users, therefore affecting their attention, recognition, and working memory. Methodologies grounded on the fields of user-centered design, user interaction, and cognitive psychology, which are based on the needs of the users, have a lot to contribute to the climate data visualization field. Here, we apply these methodologies to the redesign of an existing climate service tool tailored to the wind energy sector. We quantify the effect of the redesign on the users’ experience performing typical daily tasks, using both quantitative and qualitative indicators that include response time, success ratios, eye-tracking measures, user perceived effort, and comments, among others. Changes in the visual encoding of uncertainty and the use of interactive elements in the redesigned tool reduced the users’ response time by half, significantly improved success ratios, and eased decision-making by filtering nonrelevant information. Our results show that the application of user-centered design, interaction, and cognitive aspects to the design of climate information visualizations reduces the cognitive load of users during tasks performance, thus improving user experience. These aspects are key to successfully communicating climate information in a clearer and more accessible way, making it more understandable for both technical and nontechnical audiences.

Full access
Verónica Torralba
,
Francisco J. Doblas-Reyes
,
Dave MacLeod
,
Isadora Christel
, and
Melanie Davis

Abstract

Climate predictions tailored to the wind energy sector represent an innovation in the use of climate information to better manage the future variability of wind energy resources. Wind energy users have traditionally employed a simple approach that is based on an estimate of retrospective climatological information. Instead, climate predictions can better support the balance between energy demand and supply, as well as decisions relative to the scheduling of maintenance work. One limitation for the use of the climate predictions is the bias, which has until now prevented their incorporation in wind energy models because they require variables with statistical properties that are similar to those observed. To overcome this problem, two techniques of probabilistic climate forecast bias adjustment are considered here: a simple bias correction and a calibration method. Both approaches assume that the seasonal distributions are Gaussian. These methods are linear and robust and neither requires parameter estimation—essential features for the small sample sizes of current climate forecast systems. This paper is the first to explore the impact of the necessary bias adjustment on the forecast quality of an operational seasonal forecast system, using the European Centre for Medium-Range Weather Forecasts seasonal predictions of near-surface wind speed to produce useful information for wind energy users. The results reveal to what extent the bias adjustment techniques, in particular the calibration method, are indispensable to produce statistically consistent and reliable predictions. The forecast-quality assessment shows that calibration is a fundamental requirement for high-quality climate service.

Full access
Marta Terrado
,
Llorenç Lledó
,
Dragana Bojovic
,
Asun Lera St. Clair
,
Albert Soret
,
Francisco J. Doblas-Reyes
,
Rodrigo Manzanas
,
Daniel San-Martín
, and
Isadora Christel

Abstract

Climate predictions, from three weeks to a decade into the future, can provide invaluable information for climate-sensitive socioeconomic sectors, such as renewable energy, agriculture, or insurance. However, communicating and interpreting these predictions is not straightforward. Barriers hindering user uptake include a terminology gap between climate scientists and users, the difficulties of dealing with probabilistic outcomes for decision-making, and the lower skill of climate predictions compared to the skill of weather forecasts. This paper presents a gaming approach to break communication and understanding barriers through the application of the Weather Roulette conceptual framework. In the game, the player can choose between two forecast options, one that uses ECMWF seasonal predictions against one using climatology-derived probabilities. For each forecast option, the bet is spread proportionally to the predicted probabilities, either in a single year game or a game for the whole period of 33 past years. This paper provides skill maps of forecast quality metrics commonly used by the climate prediction community (e.g., ignorance skill score and ranked probability skill score), which in the game are linked to metrics easily understood by the business sector (e.g., interest rate and return on investment). In a simplified context, we illustrate how in skillful regions the economic benefits of using ECMWF predictions arise in the long term and are higher than using climatology. This paper provides an example of how to convey the usefulness of climate predictions and transfer the knowledge from climate science to potential users. If applied, this approach could provide the basis for a better integration of knowledge about climate anomalies into operational and managerial processes.

Free access
Martin Göber
,
Isadora Christel
,
David Hoffmann
,
Carla J. Mooney
,
Lina Rodriguez
,
Nico Becker
,
Elizabeth E. Ebert
,
Carina Fearnley
,
Vanessa J. Fundel
,
Tobias Geiger
,
Brian Golding
,
Jelmer Jeurig
,
Ilan Kelman
,
Thomas Kox
,
France-Audrey Magro
,
Adriaan Perrels
,
Julio C. Postigo
,
Sally H. Potter
,
Joanne Robbins
,
Henning Rust
,
Daniela Schoster
,
Marion L. Tan
,
Andrea Taylor
, and
Hywel Williams
Open access
Christopher J. White
,
Daniela I. V. Domeisen
,
Nachiketa Acharya
,
Elijah A. Adefisan
,
Michael L. Anderson
,
Stella Aura
,
Ahmed A. Balogun
,
Douglas Bertram
,
Sonia Bluhm
,
David J. Brayshaw
,
Jethro Browell
,
Dominik Büeler
,
Andrew Charlton-Perez
,
Xandre Chourio
,
Isadora Christel
,
Caio A. S. Coelho
,
Michael J. DeFlorio
,
Luca Delle Monache
,
Francesca Di Giuseppe
,
Ana María García-Solórzano
,
Peter B. Gibson
,
Lisa Goddard
,
Carmen González Romero
,
Richard J. Graham
,
Robert M. Graham
,
Christian M. Grams
,
Alan Halford
,
W. T. Katty Huang
,
Kjeld Jensen
,
Mary Kilavi
,
Kamoru A. Lawal
,
Robert W. Lee
,
David MacLeod
,
Andrea Manrique-Suñén
,
Eduardo S. P. R. Martins
,
Carolyn J. Maxwell
,
William J. Merryfield
,
Ángel G. Muñoz
,
Eniola Olaniyan
,
George Otieno
,
John A. Oyedepo
,
Lluís Palma
,
Ilias G. Pechlivanidis
,
Diego Pons
,
F. Martin Ralph
,
Dirceu S. Reis Jr.
,
Tomas A. Remenyi
,
James S. Risbey
,
Donald J. C. Robertson
,
Andrew W. Robertson
,
Stefan Smith
,
Albert Soret
,
Ting Sun
,
Martin C. Todd
,
Carly R. Tozer
,
Francisco C. Vasconcelos Jr.
,
Ilaria Vigo
,
Duane E. Waliser
,
Fredrik Wetterhall
, and
Robert G. Wilson

Abstract

The subseasonal-to-seasonal (S2S) predictive time scale, encompassing lead times ranging from 2 weeks to a season, is at the frontier of forecasting science. Forecasts on this time scale provide opportunities for enhanced application-focused capabilities to complement existing weather and climate services and products. There is, however, a “knowledge–value” gap, where a lack of evidence and awareness of the potential socioeconomic benefits of S2S forecasts limits their wider uptake. To address this gap, here we present the first global community effort at summarizing relevant applications of S2S forecasts to guide further decision-making and support the continued development of S2S forecasts and related services. Focusing on 12 sectoral case studies spanning public health, agriculture, water resource management, renewable energy and utilities, and emergency management and response, we draw on recent advancements to explore their application and utility. These case studies mark a significant step forward in moving from potential to actual S2S forecasting applications. We show that by placing user needs at the forefront of S2S forecast development—demonstrating both skill and utility across sectors—this dialogue can be used to help promote and accelerate the awareness, value, and cogeneration of S2S forecasts. We also highlight that while S2S forecasts are increasingly gaining interest among users, incorporating probabilistic S2S forecasts into existing decision-making operations is not trivial. Nevertheless, S2S forecasting represents a significant opportunity to generate useful, usable, and actionable forecast applications for and with users that will increasingly unlock the potential of this forecasting time scale.

Full access