Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: J. C. Chiu x
  • Refine by Access: All Content x
Clear All Modify Search
A. Marshak
,
Y. Knyazikhin
,
J. C. Chiu
, and
W. J. Wiscombe

Abstract

Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These “spectrally invariant relationships” are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in cloud-dominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with 1D radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.

Full access
D. D. Turner
,
A. M. Vogelmann
,
R. T. Austin
,
J. C. Barnard
,
K. Cady-Pereira
,
J. C. Chiu
,
S. A. Clough
,
C. Flynn
,
M. M. Khaiyer
,
J. Liljegren
,
K. Johnson
,
B. Lin
,
C. Long
,
A. Marshak
,
S. Y. Matrosov
,
S. A. McFarlane
,
M. Miller
,
Q. Min
,
P. Minimis
,
W. O'Hirok
,
Z. Wang
, and
W. Wiscombe

Many of the clouds important to the Earth's energy balance, from the Tropics to the Arctic, contain small amounts of liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP), when the LWP is small (i.e., < 100 g m−2; clouds with LWP less than this threshold will be referred to as “thin”). Thus, the radiative properties of these thin liquid water clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are thin, potentially mixed phase, and often broken (i.e., have large 3D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison used data collected at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site and included 18 different algorithms to evaluate their retrieved LWP, optical depth, and effective radii. Surprisingly, evaluation of the simplest case, a single-layer overcast stratocumulus, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss potential avenues for future research.)

Full access
C. Flamant
,
P. Knippertz
,
A. H. Fink
,
A. Akpo
,
B. Brooks
,
C. J. Chiu
,
H. Coe
,
S. Danuor
,
M. Evans
,
O. Jegede
,
N. Kalthoff
,
A. Konaré
,
C. Liousse
,
F. Lohou
,
C. Mari
,
H. Schlager
,
A. Schwarzenboeck
,
B. Adler
,
L. Amekudzi
,
J. Aryee
,
M. Ayoola
,
A. M. Batenburg
,
G. Bessardon
,
S. Borrmann
,
J. Brito
,
K. Bower
,
F. Burnet
,
V. Catoire
,
A. Colomb
,
C. Denjean
,
K. Fosu-Amankwah
,
P. G. Hill
,
J. Lee
,
M. Lothon
,
M. Maranan
,
J. Marsham
,
R. Meynadier
,
J.-B. Ngamini
,
P. Rosenberg
,
D. Sauer
,
V. Smith
,
G. Stratmann
,
J. W. Taylor
,
C. Voigt
, and
V. Yoboué

Abstract

The European Union (EU)-funded project Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) investigates the relationship between weather, climate, and air pollution in southern West Africa—an area with rapid population growth, urbanization, and an increase in anthropogenic aerosol emissions. The air over this region contains a unique mixture of natural and anthropogenic gases, liquid droplets, and particles, emitted in an environment in which multilayer clouds frequently form. These exert a large influence on the local weather and climate, mainly owing to their impact on radiation, the surface energy balance, and thus the diurnal cycle of the atmospheric boundary layer.

In June and July 2016, DACCIWA organized a major international field campaign in Ivory Coast, Ghana, Togo, Benin, and Nigeria. Three supersites in Kumasi, Savè, and Ile-Ife conducted permanent measurements and 15 intensive observation periods. Three European aircraft together flew 50 research flights between 27 June and 16 July 2016, for a total of 155 h. DACCIWA scientists launched weather balloons several times a day across the region (772 in total), measured urban emissions, and evaluated health data. The main objective was to build robust statistics of atmospheric composition, dynamics, and low-level cloud properties in various chemical landscapes to investigate their mutual interactions.

This article presents an overview of the DACCIWA field campaign activities as well as some first research highlights. The rich data obtained during the campaign will be made available to the scientific community and help to advance scientific understanding, modeling, and monitoring of the atmosphere over southern West Africa.

Full access
Laura D. Riihimaki
,
Connor Flynn
,
Allison McComiskey
,
Dan Lubin
,
Yann Blanchard
,
J. Christine Chiu
,
Graham Feingold
,
Daniel R. Feldman
,
Jake J. Gristey
,
Christian Herrera
,
Gary Hodges
,
Evgueni Kassianov
,
Samuel E. LeBlanc
,
Alexander Marshak
,
Joseph J. Michalsky
,
Peter Pilewskie
,
Sebastian Schmidt
,
Ryan C. Scott
,
Yolanda Shea
,
Kurtis Thome
,
Richard Wagener
, and
Bruce Wielicki

Abstract

Industry advances have greatly reduced the cost and size of ground-based shortwave (SW) sensors for the ultraviolet, visible, and near-infrared spectral ranges that make up the solar spectrum, while simultaneously increasing their ruggedness, reliability, and calibration accuracy needed for outdoor operation. These sensors and collocated meteorological equipment are an important part of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) User Facility, which has supported parallel integrated measurements of atmospheric and surface properties for more than two decades at fixed and mobile sites around the world. The versatile capability of these ground-based measurements includes 1) rich spectral information required for retrieving cloud and aerosol microphysical properties, such as cloud phase, cloud particle size, and aerosol size distributions, and 2) high temporal resolution needed for capturing fast evolution of cloud microphysical properties in response to rapid changes in meteorological conditions. Here we describe examples of how ARM’s spectral radiation measurements are being used to improve understanding of the complex processes governing microphysical, optical, and radiative properties of clouds and aerosol.

Full access
Jian Wang
,
Rob Wood
,
Michael P. Jensen
,
J. Christine Chiu
,
Yangang Liu
,
Katia Lamer
,
Neel Desai
,
Scott E. Giangrande
,
Daniel A. Knopf
,
Pavlos Kollias
,
Alexander Laskin
,
Xiaohong Liu
,
Chunsong Lu
,
David Mechem
,
Fan Mei
,
Mariusz Starzec
,
Jason Tomlinson
,
Yang Wang
,
Seong Soo Yum
,
Guangjie Zheng
,
Allison C. Aiken
,
Eduardo B. Azevedo
,
Yann Blanchard
,
Swarup China
,
Xiquan Dong
,
Francesca Gallo
,
Sinan Gao
,
Virendra P. Ghate
,
Susanne Glienke
,
Lexie Goldberger
,
Joseph C. Hardin
,
Chongai Kuang
,
Edward P. Luke
,
Alyssa A. Matthews
,
Mark A. Miller
,
Ryan Moffet
,
Mikhail Pekour
,
Beat Schmid
,
Arthur J. Sedlacek
,
Raymond A. Shaw
,
John E. Shilling
,
Amy Sullivan
,
Kaitlyn Suski
,
Daniel P. Veghte
,
Rodney Weber
,
Matt Wyant
,
Jaemin Yeom
,
Maria Zawadowicz
, and
Zhibo Zhang

Abstract

With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, the ENA is periodically impacted by continental aerosols, making it an excellent location to study the cloud condensation nuclei (CCN) budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. The Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) campaign was motivated by the need of comprehensive in situ measurements for improving the understanding of marine boundary layer CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation. The airborne deployments took place from 21 June to 20 July 2017 and from 15 January to 18 February 2018 in the Azores. The flights were designed to maximize the synergy between in situ airborne measurements and ongoing long-term observations at a ground site. Here we present measurements, observation strategy, meteorological conditions during the campaign, and preliminary findings. Finally, we discuss future analyses and modeling studies that improve the understanding and representation of marine boundary layer aerosols, clouds, precipitation, and the interactions among them.

Full access