Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: J. Carter Ohlmann x
  • All content x
Clear All Modify Search
J. Carter Ohlmann

Abstract

A computationally simple, double exponential, chlorophyll-dependent solar transmission parameterization for ocean general circulation models used in climate studies is presented. The transmission parameterization comes from empirical fits to a set of in-water solar flux profiles calculated with an atmosphere–ocean radiative transfer model system, run with chlorophyll concentration values over the range observed in oligotrophic, open ocean waters. Transmission parameters are available from a lookup table, or can be written as logarithmic and square root functions of chlorophyll concentration, available globally from remotely sensed ocean color data. The rms and maximum errors introduced by curve fitting are less than 3 × 10−3 and 1.5 × 10−2, respectively. Error associated with neglect of second-order cloud and solar zenith angle influences is mostly a few percent. An extension to account for second-order processes in cases where they are large (>10%) is given. The double exponential form enables solar transmission to be resolved at depths beyond 2 m. Only the first exponential term need be considered to accurately determine transmission at depths greater than 8 m. The transmission parameterization is validated with in situ optical and biological data collected in the eastern equatorial Pacific during the Eastern Pacific Investigation of Climate Processes in the Coupled Ocean–Atmosphere System (EPIC) field program, and in the western equatorial Pacific during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The rms (maximum) errors between parameterized transmission and the mean transmission profile computed from in situ values are 0.5 (1.5) and 1.9 (6.6) W m−2, for the eastern and western equatorial Pacific regions, respectively. For comparison, rms (maximum) errors between transmission from a commonly used Jerlov water type–based parameterization and mean measured values are 7.3 (26.7) and 5.0 (8.8) W m−2 for the eastern and western Pacific, respectively (both cases assume a climatological surface flux of 200 W m−2). Proper use of the solar transmission parameterization should increase the accuracy of modeled SST and upper ocean stratification. The parameterization allows ocean radiant heating in climate models to be discussed in terms of chlorophyll concentration, the physical parameter on which solar transmission most heavily depends.

Full access
J. Carter Ohlmann and David A. Siegel

Abstract

Accurate determination of sea surface temperature (SST) is critical to the success of coupled ocean–atmosphere models and the understanding of global climate. To accurately predict SST, both the quantity of solar radiation incident at the sea surface and its divergence, or transmission, within the water column must be known. Net irradiance profiles modeled with a radiative transfer model are used to develop an empirical solar transmission parameterization that depends on upper ocean chlorophyll concentration, cloud amount, and solar zenith angle. These factors explain nearly all of the variations in solar transmission. The parameterization is developed by expressing each of the modeled irradiance profiles as a sum of four exponential terms. The fit parameters are then written as linear combinations of chlorophyll concentration and cloud amount under cloudy skies, and chlorophyll concentration and solar zenith angle during clear-sky periods. Model validation gives a climatological rms error profile that is less than 4 W m−2 throughout the water column (when normalized to a surface irradiance of 200 W m−2). Compared with existing solar transmission parameterizations this is a significant improvement in model skill. The two-equation solar transmission parameterization is incorporated into the TOGA COARE bulk flux model to quantify its effects on SST and subsequent rates of air–sea heat exchange during a low wind, high insolation period. The improved solar transmission parameterization gives a mean 12 W m−2 reduction in the quantity of solar radiation attenuated within the top few meters of the ocean compared with the transmission parameterization originally used. This results in instantaneous differences in SST and the net air–sea heat flux that often reach 0.2°C and 5 W m−2, respectively.

Full access
J. Carter Ohlmann, Melanie R. Fewings, and Christopher Melton

Abstract

This study explores Eulerian and Lagrangian circulation during weak winds at two inner-shelf locations off the Southern California coast where the shoreline, shelf, wind, and wave characteristics differ from those in previous studies. In agreement with recent observational studies, wave-driven Eulerian offshore flow just outside the surf zone, referred to as undertow, is a substantial component of the net cross-shore circulation during periods of weak winds. Drifter observations show onshore surface flow, likely due to light onshore winds, and a consistent decrease in onshore velocity of roughly 4 cm s−1 within a few hundred meters of the surf zone. Undertow is examined as a possible explanation for the observed Lagrangian decelerations. Model results suggest that, even when waves are small, undertow can decrease the velocity of shoreward-moving drifters by >2 cm s−1, roughly half the observed deceleration. The coastal boundary condition also has the potential to contribute to the observed decelerations. Subtracting predicted Stokes drift velocities from the Lagrangian drifter observations improves the agreement between the drifter observations and coincident Eulerian ADCP observations.

Full access
J. Carter Ohlmann, David A. Siegel, and Catherine Gautier

Abstract

A hybrid parameterization for the determination of in-water solar fluxes is developed and applied to compute the flux of solar radiation that penetrates beyond the upper-ocean mixed layer into permanent pycnocline waters on global space and climatological timescales. The net flux of solar radiation at depth is modeled using values of the solar flux incident at the sea surface, derived from the International Satellite Cloud Climatology Project dataset, and in-water attenuation coefficients, determined using upper ocean chlorophyll concentration supplied by Coastal Zone Color Scanner imagery. Solar radiation penetration can be a significant term (20 W m−2) in the mixed layer heat budget for tropical regions. In mid- and high-latitude regions, the annual solar flux entering permanent pycnocline waters is small (<5 W m−2). However, solar penetration in these regions is important on seasonal timescales since annual cycles in incident solar flux, upper-ocean chlorophyll concentration, and mixed layer depth cause trapping of penetrating solar energy of O(10 W m−2) within the seasonal pyonocline. This trapped thermal energy is unavailable for atmospheric exchange until winter—a period as long as nine months. A nondimensional parameter is introduced that quantifies the fraction of incident solar radiation contributing to mixed layer radiant heating. This parameter can be used to characterize the relative importance of solar penetration to ocean mixed layer thermal climate.

Full access
David A. Siegel, Toby K. Westberry, and J. Carter Ohlmann

Abstract

It is well recognized that clouds regulate the flux of solar radiation reaching the sea surface. Clouds also affect the spectral distribution of incident irradiance. Observations of spectral and total incident solar irradiance made from the western equatorial Pacific Ocean are used to investigate the “color” of clouds and to evaluate its role in upper-ocean radiant heating. Under a cloudy sky, values of the near-ultraviolet to green spectral irradiance are a significantly larger fraction of their clear-sky flux than are corresponding clear-sky fractions calculated for the total solar flux. For example, when the total solar flux is reduced by clouds to one-half of that for a clear sky, the near-ultraviolet spectral flux is only reduced ∼35% from its clear-sky value. An empirical parameterization of the spectral cloud index is developed from field observations and is verified using a plane-parallel, cloudy-sky radiative transfer model. The implications of cloud color on the determination of ocean radiant heating rates and solar radiation transmission are assessed using both model results and field determinations. The radiant heating rate of the upper 10 cm of the ocean (normalized to the climatological incident solar flux) may be reduced by a factor of 2 in the presence of clouds. This occurs because the near-infrared wavelengths of solar radiation, which are preferentially attenuated by clouds, are absorbed within the upper 10 cm or so of the ocean while the near-ultraviolet and blue spectral bands propagate farther within the water column. The transmission of the solar radiative flux to depth is found to increase under a cloudy sky. The results of this study strongly indicate that clouds must be included in the specification of ocean radiant heating rates for air–sea interaction studies.

Full access
J. Carter Ohlmann, David A. Siegel, and Curtis D. Mobley

Abstract

Radiative transfer calculations are used to quantify the effects of physical and biological processes on variations in the transmission of solar radiation through the upper ocean. Results indicate that net irradiance at 10 cm and 5 m can vary by 23 and 34 W m−2, respectively, due to changes in the chlorophyll concentration, cloud amount, and solar zenith angle (when normalized to a climatological surface irradiance of 200 W m−2). Chlorophyll influences solar attenuation in the visible wavebands, and thus has little effect on transmission within the uppermost meter where the quantity of near-infrared energy is substantial. Beneath the top few meters, a chlorophyll increase from 0.03 to 0.3 mg m−3 can result in a solar flux decrease of more than 10 W m−2. Clouds alter the spectral composition of the incident irradiance by preferentially attenuating in the near-infrared region, and serve to increase solar transmission in the upper few meters as a greater portion of the irradiance exists in the deep-penetrating, visible wavebands. A 50% reduction in the incident irradiance by clouds causes a near 60% reduction in the radiant heating rate for the top 10 cm of the ocean. Solar zenith angle influences transmission during clear sky periods through changes in sea-surface albedo. This study provides necessary information for improved physically and biologically based solar transmission parameterizations that will enhance upper ocean modeling efforts and sea-surface temperature prediction.

Full access
Gary A. Wick, J. Carter Ohlmann, Christopher W. Fairall, and Andrew T. Jessup

Abstract

The oceanic near-surface temperature profile must be accurately characterized to enable precise determination of air–sea heat exchange and satellite retrievals of sea surface temperature. An improved solar transmission parameterization is integrated into existing models for the oceanic warm layer and cool skin within the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) bulk flux model to improve the accuracy of predictions of the temperature profile and corresponding heat flux components. Application of the revised bulk flux model to data from 12 diverse cruises demonstrates that the improved parameterization results in significant changes to the predicted cool-skin effect and latent heat fluxes at low wind speeds with high solar radiation due to reduced absorption of solar radiation just below the surface. Daytime skin-layer cooling is predicted to increase by 0.03 K on average but by more than 0.25 K for winds below 1 m s−1 and surface irradiance exceeding 900 W m−2. Predicted changes to the warm-layer correction were smaller but exceeded 0.1 K below 1 m s−1. Average latent and sensible heat fluxes changed by 1 W m−2, but the latent flux decreased by 5 W m−2 near winds of 0.5 m s−1 and surface irradiance of 950 W m−2. Comparison with direct observations of skin-layer cooling demonstrated, in particular, that use of the improved solar transmission model resulted in the reduction of previous systematic overestimates of diurnal skin-layer warming. Similar results can be achieved using a simplified treatment of solar absorption with an appropriate estimate of the fraction of incident solar radiation absorbed within the skin layer.

Full access
Leonel Romero, Yusuke Uchiyama, J. Carter Ohlmann, James C. McWilliams, and David A. Siegel

Abstract

Knowledge of horizontal relative dispersion in nearshore oceans is important for many applications including the transport and fate of pollutants and the dynamics of nearshore ecosystems. Two-particle dispersion statistics are calculated from millions of synthetic particle trajectories from high-resolution numerical simulations of the Southern California Bight. The model horizontal resolution of 250 m allows the investigation of the two-particle dispersion, with an initial pair separation of 500 m. The relative dispersion is characterized with respect to the coastal geometry, bathymetry, eddy kinetic energy, and the relative magnitudes of strain and vorticity. Dispersion is dominated by the submesoscale, not by tides. In general, headlands are more energetic and dispersive than bays. Relative diffusivity estimates are smaller and more anisotropic close to shore. Farther from shore, the relative diffusivity increases and becomes less anisotropic, approaching isotropy ~10 km from the coast. The degree of anisotropy of the relative diffusivity is qualitatively consistent with that for eddy kinetic energy. The total relative diffusivity as a function of pair separation distance R is on average proportional to R 5/4. Additional Lagrangian experiments at higher horizontal numerical resolution confirmed the robustness of these results. Structures of large vorticity are preferably elongated and aligned with the coastline nearshore, which may limit cross-shelf dispersion. The results provide useful information for the design of subgrid-scale mixing parameterizations as well as quantifying the transport and dispersal of dissolved pollutants and biological propagules.

Full access
J. Carter Ohlmann, Peter F. White, Andrew L. Sybrandy, and P. Peter Niiler

Abstract

A drifter for observing small spatial and temporal scales of motion in the coastal zone is presented. The drifter uses GPS to determine its position, and the Mobitex terrestrial cellular communications system to transmit the position data in near–real time. This configuration allows position data with order meter accuracy to be sampled every few minutes and transmitted inexpensively. Near-real-time transmission of highly accurate position data enables the drifters to be retrieved and redeployed, further increasing economy. Drifter slip measurements indicate that the drifter follows water to within ∼1–2 cm s−1 during light wind periods. Slip values >1 cm s−1 are aligned with the direction of surface wave propagation and are 180° out of phase, so that the drifter “walks” down waves. Nearly 200 drifter tracks collected off the Santa Barbara, California, coast show comparisons with high-frequency (HF) radar observations of near-surface currents that improve by roughly 50% when the average drifter values are computed from more than 25 observations within a 2-km square HF radar bin. The improvement is the result of drifter resolution of subgrid-scale eddies that are included in time–space-averaged HF radar fields. The average eddy kinetic energy on 2-km space and hour time scales is 25 cm2 s−2, when computed for bins with more than 25 drifter observations. Comparisons with trajectories that are computed from HF radar data show mean separation velocities of 5 and 9 cm s−1 in the along- and across-shore directions, respectively. The drifters resolve scales of motion that are not present in HF radar fields, and are thus complementary to HF radar in coastal ocean observing systems.

Full access
Leonel Romero, J. Carter Ohlmann, Enric Pallàs-Sanz, Nicholas M. Statom, Paula Pérez-Brunius, and Stéphane Maritorena

Abstract

Coincident Lagrangian observations of coastal circulation with surface drifters and dye tracer were collected to better understand small-scale physical processes controlling transport and dispersion over the inner shelf in the Gulf of Mexico. Patches of rhodamine dye and clusters of surface drifters at scales of O(100) m were deployed in a cross-shelf array within 12 km from the coast and tracked for up to 5 h with airborne and in situ observations. The airborne remote sensing system includes a hyperspectral sensor to track the evolution of dye patches and a lidar to measure directional wavenumber spectra of surface waves. Supporting in situ measurements include a CTD with a fluorometer to inform on the stratification and vertical extent of the dye and a real-time towed fluorometer for calibration of the dye concentration from hyperspectral imagery. Experiments were conducted over a wide range of conditions with surface wind speed between 3 and 10 m s−1 and varying sea states. Cross-shelf density gradients due to freshwater runoff resulted in active submesoscale flows. The airborne data allow characterization of the dominant physical processes controlling the dispersion of passive tracers such as freshwater fronts and Langmuir circulation. Langmuir circulation was identified in dye concentration maps on most sampling days except when the near surface stratification was strong. The observed relative dispersion is anisotropic with eddy diffusivities O(1) m2 s−1. Near-surface horizontal dispersion is largest along fronts and in conditions dominated by Langmuir circulation is larger in the crosswind direction. Surface convergence at fronts resulted in strong vertical velocities of up to −66 m day−1.

Full access