Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: J. D. Eastment x
  • Refine by Access: All Content x
Clear All Modify Search
Robin J. Hogan, Lin Tian, Philip R. A. Brown, Christopher D. Westbrook, Andrew J. Heymsfield, and Jon D. Eastment

Abstract

The assumed relationship between ice particle mass and size is profoundly important in radar retrievals of ice clouds, but, for millimeter-wave radars, shape and preferred orientation are important as well. In this paper the authors first examine the consequences of the fact that the widely used “Brown and Francis” mass–size relationship has often been applied to maximum particle dimension observed by aircraft D max rather than to the mean of the particle dimensions in two orthogonal directions D mean, which was originally used by Brown and Francis. Analysis of particle images reveals that D max ≃ 1.25D mean, and therefore, for clouds for which this mass–size relationship holds, the consequences are overestimates of ice water content by around 53% and of Rayleigh-scattering radar reflectivity factor by 3.7 dB. Simultaneous radar and aircraft measurements demonstrate that much better agreement in reflectivity factor is provided by using this mass–size relationship with D mean. The authors then examine the importance of particle shape and fall orientation for millimeter-wave radars. Simultaneous radar measurements and aircraft calculations of differential reflectivity and dual-wavelength ratio are presented to demonstrate that ice particles may usually be treated as horizontally aligned oblate spheroids with an axial ratio of 0.6, consistent with them being aggregates. An accurate formula is presented for the backscatter cross section apparent to a vertically pointing millimeter-wave radar on the basis of a modified version of Rayleigh–Gans theory. It is then shown that the consequence of treating ice particles as Mie-scattering spheres is to substantially underestimate millimeter-wave reflectivity factor when millimeter-sized particles are present, which can lead to retrieved ice water content being overestimated by a factor of 4.

Full access

Cloudnet

Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations

A. J. Illingworth, R. J. Hogan, E.J. O'Connor, D. Bouniol, M. E. Brooks, J. Delanoé, D. P. Donovan, J. D. Eastment, N. Gaussiat, J. W. F. Goddard, M. Haeffelin, H. Klein Baltink, O. A. Krasnov, J. Pelon, J.-M. Piriou, A. Protat, H. W. J. Russchenberg, A. Seifert, A. M. Tompkins, G.-J. van Zadelhoff, F. Vinit, U. Willén, D. R. Wilson, and C. L. Wrench

The Cloudnet project aims to provide a systematic evaluation of clouds in forecast and climate models by comparing the model output with continuous ground-based observations of the vertical profiles of cloud properties. In the models, the properties of clouds are simplified and expressed in terms of the fraction of the model grid box, which is filled with cloud, together with the liquid and ice water content of the clouds. These models must get the clouds right if they are to correctly represent both their radiative properties and their key role in the production of precipitation, but there are few observations of the vertical profiles of the cloud properties that show whether or not they are successful. Cloud profiles derived from cloud radars, ceilometers, and dual-frequency microwave radiometers operated at three sites in France, Netherlands, and the United Kingdom for several years have been compared with the clouds in seven European models. The advantage of this continuous appraisal is that the feedback on how new versions of models are performing is provided in quasi-real time, as opposed to the much longer time scale needed for in-depth analysis of complex field studies. Here, two occasions are identified when the introduction of new versions of the ECMWF and Météo-France models leads to an immediate improvement in the representation of the clouds and also provides statistics on the performance of the seven models. The Cloudnet analysis scheme is currently being expanded to include sites outside Europe and further operational forecasting and climate models.

Full access