Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: J. Delanoé x
  • Refine by Access: All Content x
Clear All Modify Search
A. Protat, G. M. McFarquhar, J. Um, and J. Delanoë

Abstract

Best estimates of the bulk microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration) are derived for three case studies of tropical ice clouds sampled during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Two case studies are aged cirrus clouds produced by deep convection (the so-called 27/01 and 29/01 cases), and the third (“02/02”) is a fresh anvil produced by deep convective activity over the Tiwi Islands. Using crystal images obtained by a Cloud Particle Imager (CPI), it is observed that small ice particles (with maximum dimension D < 50–100 μm) were predominantly quasi spherical, with the degree of nonsphericity increasing rapidly in the 50 < D < 100-μm range. For D > 100 μm, the aged cirrus clouds were predominantly characterized by bullet rosettes and aggregates of bullet rosettes, plates, and columns. In contrast, the fresh anvil had more frequent occurrences of plates, columns, aggregates of plates, and occasionally capped columns. The impact of shattering of large ice crystals on probe tips and the overall quality of the TWP-ICE in situ microphysical measurements are assessed. It is suggested that shattering has a relatively small impact on the CPI and cloud droplet probe (CDP) TWP-ICE data and a large impact on the Cloud Aerosol Spectrometer data, as already documented by others. It is also shown that the CPI size distributions must be multiplied by a factor of 4 to match those of the cloud imaging probe (CIP) for maximum dimension larger than 100 μm (taken as a reference). A technique [named Best Estimate of Area and Density (BEAD)] to minimize errors associated with the density (ρ)–D and projected area (A)–D assumptions in bulk microphysics calculation is introduced and applied to the TWP-ICE data. The method makes direct use of the frequency of occurrence of each particle habit as classified from the CPI data and prescribed ρD and AD relationships from the literature. This approach produces ice water content (IWC) estimates that are virtually unbiased relative to bulk measures obtained from a counterflow spectrometer and impactor (CSI) probe. In contrast, the use of ρD and AD relationships for single habits does produce large biases relative to the CSI observations: from −50% for bullet rosettes to +70%–80% for aggregates. The so-called width, length, area, and perimeter (WLAP) technique, which also makes use of individual CPI images, is found to produce positively biased IWCs (by 40% or so), and has a standard deviation of the errors similar to the BEAD technique. The impact of the large variability of the size distributions measured by different probe combinations on the bulk microphysical properties is characterized. The mean fractional differences with respect to the CSI measurements are small for the CPI + CIP, CPI, and CDP + CIP combinations (2.2%, −0.8%, and −1.1%, respectively), with standard deviations of the fractional differences ranging from 7% to 9%. This result provides an independent validation of the CPI scaling factor. The fractional differences produced between the CPI + CIP, CPI, and CDP + CIP combinations for extinction, effective radius, and total concentration are 33%, 10%–20%, and 90%, respectively, with relatively small standard deviations of 5%–8%. The fractional difference on total concentration varies greatly over the concentration range though, with values being larger than a factor of 2 for total concentrations smaller than 40 L−1, but reducing to 10%–20% for concentrations larger than 100 L−1. Therefore, caution should be exercised when using total concentrations smaller than 60–80 L−1 as references for radar–lidar retrieval evaluation.

Full access
Thorwald H. M. Stein, Julien Delanoë, and Robin J. Hogan

Abstract

The A-Train constellation of satellites provides a new capability to measure vertical cloud profiles that leads to more detailed information on ice-cloud microphysical properties than has been possible up to now. A variational radar–lidar ice-cloud retrieval algorithm (VarCloud) takes advantage of the complementary nature of the CloudSat radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar to provide a seamless retrieval of ice water content, effective radius, and extinction coefficient from the thinnest cirrus (seen only by the lidar) to the thickest ice cloud (penetrated only by the radar). In this paper, several versions of the VarCloud retrieval are compared with the CloudSat standard ice-only retrieval of ice water content, two empirical formulas that derive ice water content from radar reflectivity and temperature, and retrievals of vertically integrated properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) radiometer. The retrieved variables typically agree to within a factor of 2, on average, and most of the differences can be explained by the different microphysical assumptions. For example, the ice water content comparison illustrates the sensitivity of the retrievals to assumed ice particle shape. If ice particles are modeled as oblate spheroids rather than spheres for radar scattering then the retrieved ice water content is reduced by on average 50% in clouds with a reflectivity factor larger than 0 dBZ. VarCloud retrieves optical depths that are on average a factor-of-2 lower than those from MODIS, which can be explained by the different assumptions on particle mass and area; if VarCloud mimics the MODIS assumptions then better agreement is found in effective radius and optical depth is overestimated. MODIS predicts the mean vertically integrated ice water content to be around a factor-of-3 lower than that from VarCloud for the same retrievals, however, because the MODIS algorithm assumes that its retrieved effective radius (which is mostly representative of cloud top) is constant throughout the depth of the cloud. These comparisons highlight the need to refine microphysical assumptions in all retrieval algorithms and also for future studies to compare not only the mean values but also the full probability density function.

Full access
A. Protat, J. Delanoë, E. J. O’Connor, and T. S. L’Ecuyer
Full access
A. Protat, J. Delanoë, D. Bouniol, A. J. Heymsfield, A. Bansemer, and P. Brown

Abstract

The objective of this paper is to assess the performances of the proposed ice water content (IWC)–radar reflectivity Z and IWC–Z–temperature T relationships for accurate retrievals of IWC from radar in space or at ground-based sites, in the framework of the forthcoming CloudSat spaceborne radar, and of the European CloudNET and U.S. Atmospheric Radiation Measurement Program projects. For this purpose, a large airborne in situ microphysical database is used to perform a detailed error analysis of the IWC–Z and IWC–ZT methods. This error analysis does not include the error resulting from the mass–dimension relationship assumed in these methods, although the expected magnitude of this error is bounded in the paper. First, this study reveals that the use of a single IWC–Z relationship to estimate IWC at global scale would be feasible up to −15 dBZ, but for larger reflectivities (and therefore larger IWCs) different sets of relationships would have to be used for midlatitude and tropical ice clouds. New IWC–Z and IWC–ZT relationships are then developed from the large aircraft database and by splitting this database into midlatitude and tropical subsets, and an error analysis is performed. For the IWC–Z relationships, errors decrease roughly linearly from +210%/−70% for IWC = 10−4 g m−3 to +75%/−45% for IWC = 10−2 g m−3, are nearly constant (+50%/−33%) for the intermediate IWCs (0.03–1 g m−3), and then linearly increase up to +210%/−70% for the largest IWCs. The error curves have the same shape for the IWC–ZT relationships, with a general reduction of errors with respect to the IWC–Z relationships. Comparisons with radar–lidar retrievals confirm these findings. The main improvement brought by the use of temperature as an additional constraint to the IWC retrieval is to reduce both the systematic overestimation and rms differences of the small IWCs (IWC < 0.01 g m−3). For the large IWCs, the use of temperature also results in a slight reduction of the rms differences but in a substantial reduction (by a factor of 2) of the systematic underestimation of the large IWCs, probably owing to a better account of the Mie effect when IWC–Z relationships are stratified by temperature.

Full access
A. Protat, J. Delanoë, E. J. O’Connor, and T. S. L’Ecuyer

Abstract

In this paper, the statistical properties of tropical ice clouds (ice water content, visible extinction, effective radius, and total number concentration) derived from 3 yr of ground-based radar–lidar retrievals from the U.S. Department of Energy Atmospheric Radiation Measurement Climate Research Facility in Darwin, Australia, are compared with the same properties derived using the official CloudSat microphysical retrieval methods and from a simpler statistical method using radar reflectivity and air temperature. It is shown that the two official CloudSat microphysical products (2B-CWC-RO and 2B-CWC-RVOD) are statistically virtually identical. The comparison with the ground-based radar–lidar retrievals shows that all satellite methods produce ice water contents and extinctions in a much narrower range than the ground-based method and overestimate the mean vertical profiles of microphysical parameters below 10-km height by over a factor of 2. Better agreements are obtained above 10-km height. Ways to improve these estimates are suggested in this study. Effective radii retrievals from the standard CloudSat algorithms are characterized by a large positive bias of 8–12 μm. A sensitivity test shows that in response to such a bias the cloud longwave forcing is increased from 44.6 to 46.9 W m−2 (implying an error of about 5%), whereas the negative cloud shortwave forcing is increased from −81.6 to −82.8 W m−2. Further analysis reveals that these modest effects (although not insignificant) can be much larger for optically thick clouds. The statistical method using CloudSat reflectivities and air temperature was found to produce inaccurate mean vertical profiles and probability distribution functions of effective radius. This study also shows that the retrieval of the total number concentration needs to be improved in the official CloudSat microphysical methods prior to a quantitative use for the characterization of tropical ice clouds. Finally, the statistical relationship used to produce ice water content from extinction and air temperature obtained by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is evaluated for tropical ice clouds. It is suggested that the CALIPSO ice water content retrieval is robust for tropical ice clouds, but that the temperature dependence of the statistical relationship used should be slightly refined to better reproduce the radar–lidar retrievals.

Full access
Claire Tinel, Jacques Testud, Jacques Pelon, Robin J. Hogan, Alain Protat, Julien Delanoë, and Dominique Bouniol

Abstract

Clouds are an important component of the earth’s climate system. A better description of their microphysical properties is needed to improve radiative transfer calculations. In the framework of the Earth, Clouds, Aerosols, and Radiation Explorer (EarthCARE) mission preparation, the radar–lidar (RALI) airborne system, developed at L’Institut Pierre Simon Laplace (France), can be used as an airborne demonstrator. This paper presents an original method that combines cloud radar (94–95 GHz) and lidar data to derive the radiative and microphysical properties of clouds. It combines the apparent backscatter reflectivity from the radar and the apparent backscatter coefficient from the lidar. The principle of this algorithm relies on the use of a relationship between the extinction coefficient and the radar specific attenuation, derived from airborne microphysical data and Mie scattering calculations. To solve radar and lidar equations in the cloud region where signals can be obtained from both instruments, the extinction coefficients at some reference range z 0 must be known. Because the algorithms are stable for inversion performed from range z 0 toward the emitter, z 0 is chosen at the farther cloud boundary as observed by the lidar. Then, making an assumption of a relationship between extinction coefficient and backscattering coefficient, the whole extinction coefficient, the apparent reflectivity, cloud physical parameters, the effective radius, and ice water content profiles are derived. This algorithm is applied to a blind test for downward-looking instruments where the original profiles are derived from in situ measurements. It is also applied to real lidar and radar data, obtained during the 1998 Cloud Lidar and Radar Experiment (CLARE’98) field project when a prototype airborne RALI system was flown pointing at nadir. The results from the synergetic algorithm agree reasonably well with the in situ measurements.

Full access
D. Leroy, E. Fontaine, A. Schwarzenboeck, J. W. Strapp, A. Korolev, G. McFarquhar, R. Dupuy, C. Gourbeyre, L. Lilie, A. Protat, J. Delanoe, F. Dezitter, and A. Grandin

Abstract

High ice water content (IWC) regions in mesoscale convective systems (MCSs) are a potential threat to commercial aviation, as they are suspected to cause in-service engine power-loss events and air data probe malfunctions. To investigate this, the high-altitude ice crystals (HAIC)/high ice water content (HIWC) projects set up a first field campaign in Darwin (Australia) in 2014. The airborne instrumentation was selected to provide the most accurate measurements of both the bulk total water content (TWC), using a specially developed isokinetic evaporator, and the individual ice crystals properties, using particle imaging probes.

This study focuses on determining the size ranges of ice crystals responsible for the mass in high IWC regions, defined here as cloud regions with IWC greater than 1.5 g m−3. It is shown that for high IWC areas in most of the encountered MCSs, median mass diameters (MMDs) of ice crystals range from 250 to 500 μm and decrease with increasing TWC and decreasing temperature. At the same time, the mass contribution of the smallest crystals (below 100 μm) remains generally low (below 15%).

In contrast, data from two flight missions in a long-lasting quasi-stationary tropical storm reveal that high IWC values can also be associated with MMDs in the range 400–800 μm and peak values of up to 2 mm. Ice crystal images suggest a major growth contribution by vapor deposition (columns, capped columns) even for such larger MMD values.

Full access
A. Protat, J. Delanoë, J. W. Strapp, E. Fontaine, D. Leroy, A. Schwarzenboeck, L. Lilie, C. Davison, F. Dezitter, A. Grandin, and M. Weber

Abstract

In this paper, unprecedented bulk measurements of ice water content (IWC) up to approximately 5 g m−3 and 95-GHz radar reflectivities Z 95 are used to analyze the statistical relationship between these two quantities and its variability. The unique aspect of this study is that these IWC–Z 95 relationships do not use assumptions on cloud microphysics or backscattering calculations. IWCs greater than 2 g m−3 are also included for the first time in such an analysis, owing to improved bulk IWC probe technology and a flight program targeting high ice water content. Using a single IW–Z 95 relationship allows for the retrieval of IWC from radar reflectivities with less than 30% bias and 40%–70% rms difference. These errors can be reduced further, down to 10%–20% bias over the whole IWC range, using the temperature variability of this relationship. IWC errors largely increase for Z 95 > 16 dBZ, as a result of the distortion of the IWC–Z 95 relationship by non-Rayleigh scattering effects. A nonlinear relationship is proposed to reduce these errors down to 20% bias and 20%–35% rms differences. This nonlinear relationship also outperforms the temperature-dependent IWC–Z 95 relationship for convective profiles. The joint frequency distribution of IWC and temperature within and around deep tropical convective cores shows that at the −50° ± 5°C level, the cruise altitude of many commercial jet aircraft, IWCs greater than 1.5 g m−3 were found exclusively in convective profiles.

Full access
Andrew J. Heymsfield, Alain Protat, Dominique Bouniol, Richard T. Austin, Robin J. Hogan, Julien Delanoë, Hajime Okamoto, Kaori Sato, Gerd-Jan van Zadelhoff, David P. Donovan, and Zhien Wang

Abstract

Vertical profiles of ice water content (IWC) can now be derived globally from spaceborne cloud satellite radar (CloudSat) data. Integrating these data with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data may further increase accuracy. Evaluations of the accuracy of IWC retrieved from radar alone and together with other measurements are now essential. A forward model employing aircraft Lagrangian spiral descents through mid- and low-latitude ice clouds is used to estimate profiles of what a lidar and conventional and Doppler radar would sense. Radar reflectivity Ze and Doppler fall speed at multiple wavelengths and extinction in visible wavelengths were derived from particle size distributions and shape data, constrained by IWC that were measured directly in most instances. These data were provided to eight teams that together cover 10 retrieval methods. Almost 3400 vertically distributed points from 19 clouds were used. Approximate cloud optical depths ranged from below 1 to more than 50. The teams returned retrieval IWC profiles that were evaluated in seven different ways to identify the amount and sources of errors. The mean (median) ratio of the retrieved-to-measured IWC was 1.15 (1.03) ± 0.66 for all teams, 1.08 (1.00) ± 0.60 for those employing a lidar–radar approach, and 1.27 (1.12) ± 0.78 for the standard CloudSat radar–visible optical depth algorithm for Ze > −28 dBZe. The ratios for the groups employing the lidar–radar approach and the radar–visible optical depth algorithm may be lower by as much as 25% because of uncertainties in the extinction in small ice particles provided to the groups. Retrievals from future spaceborne radar using reflectivity–Doppler fall speeds show considerable promise. A lidar–radar approach, as applied to measurements from CALIPSO and CloudSat, is useful only in a narrow range of ice water paths (IWP) (40 < IWP < 100 g m−2). Because of the use of the Rayleigh approximation at high reflectivities in some of the algorithms and differences in the way nonspherical particles and Mie effects are considered, IWC retrievals in regions of radar reflectivity at 94 GHz exceeding about 5 dBZe are subject to uncertainties of ±50%.

Full access
A. Protat, D. Bouniol, J. Delanoë, E. O’Connor, P. T. May, A. Plana-Fattori, A. Hasson, U. Görsdorf, and A. J. Heymsfield

Abstract

A quantitative assessment of Cloudsat reflectivities and basic ice cloud properties (cloud base, top, and thickness) is conducted in the present study from both airborne and ground-based observations. Airborne observations allow direct comparisons on a limited number of ocean backscatter and cloud samples, whereas the ground-based observations allow statistical comparisons on much longer time series but with some additional assumptions. Direct comparisons of the ocean backscatter and ice cloud reflectivities measured by an airborne cloud radar and Cloudsat during two field experiments indicate that, on average, Cloudsat measures ocean backscatter 0.4 dB higher and ice cloud reflectivities 1 dB higher than the airborne cloud radar. Five ground-based sites have also been used for a statistical evaluation of the Cloudsat reflectivities and basic cloud properties. From these comparisons, it is found that the weighted-mean difference Z CloudsatZ Ground ranges from −0.4 to +0.3 dB when a ±1-h time lag around the Cloudsat overpass is considered. Given the fact that the airborne and ground-based radar calibration accuracy is about 1 dB, it is concluded that the reflectivities of the spaceborne, airborne, and ground-based radars agree within the expected calibration uncertainties of the airborne and ground-based radars. This result shows that the Cloudsat radar does achieve the claimed sensitivity of around −29 dBZ. Finally, an evaluation of the tropical “convective ice” profiles measured by Cloudsat has been carried out over the tropical site in Darwin, Australia. It is shown that these profiles can be used statistically down to approximately 9-km height (or 4 km above the melting layer) without attenuation and multiple scattering corrections over Darwin. It is difficult to estimate if this result is applicable to all types of deep convective storms in the tropics. However, this first study suggests that the Cloudsat profiles in convective ice need to be corrected for attenuation by supercooled liquid water and ice aggregates/graupel particles and multiple scattering prior to their quantitative use.

Full access