Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: J. Feddema x
  • Refine by Access: All Content x
Clear All Modify Search
K. W. Oleson, G. B. Bonan, J. Feddema, and M. Vertenstein

Abstract

In a companion paper, the authors presented a formulation and evaluation of an urban parameterization designed to represent the urban energy balance in the Community Land Model. Here the robustness of the model is tested through sensitivity studies and the model’s ability to simulate urban heat islands in different environments is evaluated. Findings show that heat storage and sensible heat flux are most sensitive to uncertainties in the input parameters within the atmospheric and surface conditions considered here. The sensitivity studies suggest that attention should be paid not only to characterizing accurately the structure of the urban area (e.g., height-to-width ratio) but also to ensuring that the input data reflect the thermal admittance properties of each of the city surfaces. Simulations of the urban heat island show that the urban model is able to capture typical observed characteristics of urban climates qualitatively. In particular, the model produces a significant heat island that increases with height-to-width ratio. In urban areas, daily minimum temperatures increase more than daily maximum temperatures, resulting in a reduced diurnal temperature range relative to equivalent rural environments. The magnitude and timing of the heat island vary tremendously depending on the prevailing meteorological conditions and the characteristics of surrounding rural environments. The model also correctly increases the Bowen ratio and canopy air temperatures of urban systems as impervious fraction increases. In general, these findings are in agreement with those observed for real urban ecosystems. Thus, the model appears to be a useful tool for examining the nature of the urban climate within the framework of global climate models.

Full access
K. W. Oleson, G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond

Abstract

Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.

Full access
Peter J. Lawrence, Johannes J. Feddema, Gordon B. Bonan, Gerald A. Meehl, Brian C. O’Neill, Keith W. Oleson, Samuel Levis, David M. Lawrence, Erik Kluzek, Keith Lindsay, and Peter E. Thornton

Abstract

To assess the climate impacts of historical and projected land cover change in the Community Climate System Model, version 4 (CCSM4), new time series of transient Community Land Model, version 4 (CLM4) plant functional type (PFT) and wood harvest parameters have been developed. The new parameters capture the dynamics of the Coupled Model Intercomparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005 and for the four representative concentration pathway (RCP) scenarios from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 reveals that the model produced a historical cumulative land use flux of 127.7 PgC from 1850 to 2005, which is in general agreement with other global estimates of 156 PgC for the same period. The biogeophysical impacts of the transient land cover change parameters were cooling of the near-surface atmosphere over land by −0.1°C, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was counteracted by decreasing snow albedo from black carbon deposition and high-latitude warming. The future CCSM4 RCP simulations showed that the CLM4 transient PFT parameters can be used to represent a wide range of land cover change scenarios. In the reforestation scenario of RCP 4.5, CCSM4 simulated a drawdown of 67.3 PgC from the atmosphere into the terrestrial ecosystem and product pools. By contrast the RCP 8.5 scenario with deforestation and high wood harvest resulted in the release of 30.3 PgC currently stored in the ecosystem.

Full access
J. Ching, G. Mills, B. Bechtel, L. See, J. Feddema, X. Wang, C. Ren, O. Brousse, A. Martilli, M. Neophytou, P. Mouzourides, I. Stewart, A. Hanna, E. Ng, M. Foley, P. Alexander, D. Aliaga, D. Niyogi, A. Shreevastava, P. Bhalachandran, V. Masson, J. Hidalgo, J. Fung, M. Andrade, A. Baklanov, W. Dai, G. Milcinski, M. Demuzere, N. Brunsell, M. Pesaresi, S. Miao, Q. Mu, F. Chen, and N. Theeuwes

Abstract

The World Urban Database and Access Portal Tools (WUDAPT) is an international community-based initiative to acquire and disseminate climate relevant data on the physical geographies of cities for modeling and analysis purposes. The current lacuna of globally consistent information on cities is a major impediment to urban climate science toward informing and developing climate mitigation and adaptation strategies at urban scales. WUDAPT consists of a database and a portal system; its database is structured into a hierarchy representing different levels of detail, and the data are acquired using innovative protocols that utilize crowdsourcing approaches, Geowiki tools, freely accessible data, and building typology archetypes. The base level of information (L0) consists of local climate zone (LCZ) maps of cities; each LCZ category is associated with a range of values for model-relevant surface descriptors (roughness, impervious surface cover, roof area, building heights, etc.). Levels 1 (L1) and 2 (L2) will provide specific intra-urban values for other relevant descriptors at greater precision, such as data morphological forms, material composition data, and energy usage. This article describes the status of the WUDAPT project and demonstrates its potential value using observations and models. As a community-based project, other researchers are encouraged to participate to help create a global urban database of value to urban climate scientists.

Open access