Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: J. Garvelmann x
  • All content x
Clear All Modify Search
J. Garvelmann, S. Pohl, and M. Weiler

Abstract

Hourly observations of 65 snow monitoring stations were used to investigate the spatiotemporal variability of the surface energy balance during snowmelt in the Black Forest region of southwestern Germany. The study focuses on two rain-on-snow (ROS) events in December 2012 and a clear sky period at the beginning of March 2013 using the same study locations. ROS and clear sky were chosen since they are completely different snowmelt conditions in terms of energy exchanges and dynamics. The results show that snowmelt was dominated by turbulent exchanges at the open field sites and by both turbulent exchanges and net longwave radiation in the forest during ROS. The energy available for snowmelt can be almost identical at open and forest locations during ROS, and a constant energy flux even during night was directed toward the snowpack. During the clear sky conditions, net shortwave radiation was the dominating term in the open, whereas net shortwave and net longwave radiation were most important in the forest. A diurnal signal with positive energy balance during daylight and negative energy balance in the night was observed, with considerably reduced energy available for snowmelt in the forest. Furthermore, the stratified sampling design revealed the strong influence of the canopy and the topography at the locations on the observed energy fluxes. Elevation, aspect, and leaf area index (LAI) were the most important predictor variables during ROS, whereas aspect and LAI were most influential during the clear sky period. The study highlights the distinct spatial variability of the individual energy balance terms over a relatively small area during the differing snowmelt conditions.

Full access
B. Wolf, C. Chwala, B. Fersch, J. Garvelmann, W. Junkermann, M. J. Zeeman, A. Angerer, B. Adler, C. Beck, C. Brosy, P. Brugger, S. Emeis, M. Dannenmann, F. De Roo, E. Diaz-Pines, E. Haas, M. Hagen, I. Hajnsek, J. Jacobeit, T. Jagdhuber, N. Kalthoff, R. Kiese, H. Kunstmann, O. Kosak, R. Krieg, C. Malchow, M. Mauder, R. Merz, C. Notarnicola, A. Philipp, W. Reif, S. Reineke, T. Rödiger, N. Ruehr, K. Schäfer, M. Schrön, A. Senatore, H. Shupe, I. Völksch, C. Wanninger, S. Zacharias, and H. P. Schmid

Abstract

ScaleX is a collaborative measurement campaign, collocated with a long-term environmental observatory of the German Terrestrial Environmental Observatories (TERENO) network in the mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land surface–atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated in a small number of locations. In contrast, short-term intensive campaigns offer the opportunity to assess spatial distributions and gradients by concentrated instrument deployments, and by mobile sensors (ground and/or airborne) to obtain transects and three-dimensional patterns of atmospheric, surface, or soil variables and processes. Moreover, intensive campaigns are ideal proving grounds for innovative instruments, methods, and techniques to measure quantities that cannot (yet) be automated or deployed over long time periods. ScaleX is distinctive in its design, which combines the benefits of a long-term environmental-monitoring approach (TERENO) with the versatility and innovative power of a series of intensive campaigns, to bridge across a wide span of spatial and temporal scales. This contribution presents the concept and first data products of ScaleX-2015, which occurred in June–July 2015. The second installment of ScaleX took place in summer 2016 and periodic further ScaleX campaigns are planned throughout the lifetime of TERENO. This paper calls for collaboration in future ScaleX campaigns or to use our data in modelling studies. It is also an invitation to emulate the ScaleX concept at other long-term observatories.

Full access