Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: J. Gilson x
  • Refine by Access: All Content x
Clear All Modify Search
D. Roemmich, J. Gilson, R. Davis, P. Sutton, S. Wijffels, and S. Riser

Abstract

An increase in the circulation of the South Pacific Ocean subtropical gyre, extending from the sea surface to middepth, is observed over 12 years. Datasets used to quantify the decadal gyre spinup include satellite altimetric height, the World Ocean Circulation Experiment (WOCE) hydrographic and float survey of the South Pacific, a repeated hydrographic transect along 170°W, and profiling float data from the global Argo array. The signal in sea surface height is a 12-cm increase between 1993 and 2004, on large spatial scale centered at about 40°S, 170°W. The subsurface datasets show that this signal is predominantly due to density variations in the water column, that is, to deepening of isopycnal surfaces, extending to depths of at least 1800 m. The maximum increase in dynamic height is collocated with the deep center of the subtropical gyre, and the signal represents an increase in the total counterclockwise geostrophic circulation of the gyre, by at least 20% at 1000 m. A comparison of WOCE and Argo float trajectories at 1000 m confirms the gyre spinup during the 1990s. The signals in sea surface height, dynamic height, and velocity all peaked around 2003 and subsequently began to decline. The 1990s increase in wind-driven circulation resulted from decadal intensification of wind stress curl east of New Zealand—variability associated with an increase in the atmosphere’s Southern Hemisphere annular mode. It is suggested (based on altimetric height) that midlatitude gyres in all of the oceans have been affected by variability in the atmospheric annular modes on decadal time scales.

Full access
N. V. Zilberman, D. H. Roemmich, S. T. Gille, and J. Gilson

Abstract

Western boundary currents (WBCs) are highly variable narrow meandering jets, making assessment of their volume transports a complex task. The required high-resolution temporal and spatial measurements are available only at a limited number of sites. In this study a method is developed for improving estimates of the East Australian Current (EAC) mean transport and its low-frequency variability, using complementary modern datasets. The present calculation is a case study that will be extended to other subtropical WBCs. The method developed in this work will reduce uncertainties in estimates of the WBC volume transport and in the interannual mass and heat budgets of the meridional overturning circulations, improving our understanding of the response of WBCs to local and remote forcing on long time scales. High-resolution expendable bathythermograph (HR-XBT) profiles collected along a transect crossing the EAC system near Brisbane, Australia, are merged with coexisting profiles and parking-depth trajectories from Argo floats, and with altimetric sea surface height data. Using HR-XBT/Argo/altimetry data combined with Argo trajectory-based velocities at 1000 m, the 2004–15 mean poleward alongshore transport of the EAC is 19.5 ± 2.0 Sv (1 Sv ≡ 106 m3 s−1) of which 2.5 ± 0.5 Sv recirculate equatorward just offshore of the EAC. These transport estimates are consistent in their mean and variability with concurrent and nearly collocated moored observations at 27°S, and with earlier moored observations along 30°S. Geostrophic transport anomalies in the EAC system, including the EAC recirculation, show a standard deviation of ±3.1 Sv at interannual time scales between 2004 and 2015.

Open access
Dean Roemmich, Jeffrey T. Sherman, Russ E. Davis, Kyle Grindley, Michael McClune, Charles J. Parker, David N. Black, Nathalie Zilberman, Sarah G. Purkey, Philip J. H. Sutton, and John Gilson

Abstract

Deployment of Deep Argo regional pilot arrays is underway as a step toward a global array of 1250 surface-to-bottom profiling floats embedded in the upper-ocean (2000 m) Argo Program. Of the 80 active Deep Argo floats as of July 2019, 55 are Deep Sounding Oceanographic Lagrangian Observer (SOLO) 6000-m instruments, and the rest are composed of three additional models profiling to either 4000 or 6000 m. Early success of the Deep SOLO is owed partly to its evolution from the Core Argo SOLO-II. Here, Deep SOLO design choices are described, including the spherical glass pressure housing, the hydraulics system, and the passive bottom detection system. Operation of Deep SOLO is flexible, with the mission parameters being adjustable from shore via Iridium communications. Long lifetime is a key element in sustaining a global array, and Deep SOLO combines a long battery life of over 200 cycles to 6000 m with robust operation and a low failure rate. The scientific value of Deep SOLO is illustrated, including examples of its ability (i) to observe large-scale spatial and temporal variability in deep ocean temperature and salinity, (ii) to sample newly formed water masses year-round and within a few meters of the sea floor, and (iii) to explore the poorly known abyssal velocity field and deep circulation of the World Ocean. Deep SOLO’s full-depth range and its potential for global coverage are critical attributes for complementing the Core Argo Program and achieving these objectives.

Open access
J. M. Flores, G. Bourdin, O. Altaratz, M. Trainic, N. Lang-Yona, E. Dzimban, S. Steinau, F. Tettich, S. Planes, D. Allemand, S. Agostini, B. Banaigs, E. Boissin, E. Boss, E. Douville, D. Forcioli, P. Furla, P. E. Galand, M. Sullivan, É. Gilson, F. Lombard, C. Moulin, S. Pesant, J. Poulain, S. Reynaud, S. Romac, S. Sunagawa, O. P. Thomas, R. Troublé, C. de Vargas, R. Vega Thurber, C. R. Voolstra, P. Wincker, D. Zoccola, C. Bowler, G. Gorsky, Y. Rudich, A. Vardi, and I. Koren
Full access
J. M. Flores, G. Bourdin, O. Altaratz, M. Trainic, N. Lang-Yona, E. Dzimban, S. Steinau, F. Tettich, S. Planes, D. Allemand, S. Agostini, B. Banaigs, E. Boissin, E. Boss, E. Douville, D. Forcioli, P. Furla, P. E. Galand, M. B. Sullivan, É. Gilson, F. Lombard, C. Moulin, S. Pesant, J. Poulain, S. Reynaud, S. Romac, S. Sunagawa, O. P. Thomas, R. Troublé, C. de Vargas, R. Vega Thurber, C. R. Voolstra, P. Wincker, D. Zoccola, C. Bowler, G. Gorsky, Y. Rudich, A. Vardi, and I. Koren

Abstract

Marine aerosols play a significant role in the global radiative budget, in clouds’ processes, and in the chemistry of the marine atmosphere. There is a critical need to better understand their production mechanisms, composition, chemical properties, and the contribution of ocean-derived biogenic matter to their mass and number concentration. Here we present an overview of a new dataset of in situ measurements of marine aerosols conducted over the 2.5-yr Tara Pacific Expedition over 110,000 km across the Atlantic and Pacific Oceans. Preliminary results are presented here to describe the new dataset that will be built using this novel set of measurements. It will characterize marine aerosols properties in detail and will open a new window to study the marine aerosol link to the water properties and environmental conditions.

Free access
Gregory C. Johnson, Rick Lumpkin, Simone R. Alin, Dillon J. Amaya, Molly O. Baringer, Tim Boyer, Peter Brandt, Brendan R. Carter, Ivona Cetinić, Don P. Chambers, Lijing Cheng, Andrew U. Collins, Cathy Cosca, Ricardo Domingues, Shenfu Dong, Richard A. Feely, Eleanor Frajka-Williams, Bryan A. Franz, John Gilson, Gustavo Goni, Benjamin D. Hamlington, Josefine Herrford, Zeng-Zhen Hu, Boyin Huang, Masayoshi Ishii, Svetlana Jevrejeva, John J. Kennedy, Marion Kersalé, Rachel E. Killick, Peter Landschützer, Matthias Lankhorst, Eric Leuliette, Ricardo Locarnini, John M. Lyman, John J. Marra, Christopher S. Meinen, Mark A. Merrifield, Gary T. Mitchum, Ben I. Moat, R. Steven Nerem, Renellys C. Perez, Sarah G. Purkey, James Reagan, Alejandra Sanchez-Franks, Hillary A. Scannell, Claudia Schmid, Joel P. Scott, David A. Siegel, David A. Smeed, Paul W. Stackhouse, William Sweet, Philip R. Thompson, Joaquin A. Triñanes, Denis L. Volkov, Rik Wanninkhof, Robert A. Weller, Caihong Wen, Toby K. Westberry, Matthew J. Widlansky, Anne C. Wilber, Lisan Yu, and Huai-Min Zhang
Full access
Molly Baringer, Mariana B. Bif, Tim Boyer, Seth M. Bushinsky, Brendan R. Carter, Ivona Cetinić, Don P. Chambers, Lijing Cheng, Sanai Chiba, Minhan Dai, Catia M. Domingues, Shenfu Dong, Andrea J. Fassbender, Richard A. Feely, Eleanor Frajka-Williams, Bryan A. Franz, John Gilson, Gustavo Goni, Benjamin D. Hamlington, Zeng-Zhen Hu, Boyin Huang, Masayoshi Ishii, Svetlana Jevrejeva, William E. Johns, Gregory C. Johnson, Kenneth S. Johnson, John Kennedy, Marion Kersalé, Rachel E. Killick, Peter Landschützer, Matthias Lankhorst, Tong Lee, Eric Leuliette, Feili Li, Eric Lindstrom, Ricardo Locarnini, Susan Lozier, John M. Lyman, John J. Marra, Christopher S. Meinen, Mark A. Merrifield, Gary T. Mitchum, Ben Moat, Didier Monselesan, R. Steven Nerem, Renellys C. Perez, Sarah G. Purkey, Darren Rayner, James Reagan, Nicholas Rome, Alejandra Sanchez-Franks, Claudia Schmid, Joel P. Scott, Uwe Send, David A. Siegel, David A. Smeed, Sabrina Speich, Paul W. Stackhouse Jr., William Sweet, Yuichiro Takeshita, Philip R. Thompson, Joaquin A. Triñanes, Martin Visbeck, Denis L. Volkov, Rik Wanninkhof, Robert A. Weller, Toby K. Westberry, Matthew J. Widlansky, Susan E. Wijffels, Anne C. Wilber, Lisan Yu, Weidong Yu, and Huai-Min Zhang
Free access