Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: J. Hair x
  • Refine by Access: All Content x
Clear All Modify Search
David A. Peterson, Edward J. Hyer, James R. Campbell, Michael D. Fromm, Johnathan W. Hair, Carolyn F. Butler, and Marta A. Fenn

Abstract

The 2013 Rim Fire, which burned over 104,000 ha, was one of the most severe fire events in California’s history, in terms of its rapid growth, intensity, overall size, and persistent smoke plume. At least two large pyrocumulonimbus (pyroCb) events were observed, allowing smoke particles to extend through the upper troposphere over a large portion of the Pacific Northwest. However, the most extreme fire spread was observed on days without pyroCb activity or significant regional convection. A diverse archive of ground, airborne, and satellite data collected during the Rim Fire provides a unique opportunity to examine the conditions required for both extreme spread events and pyroCb development. Results highlight the importance of upper-level and nocturnal meteorology, as well as the limitations of traditional fire weather indices. The Rim Fire dataset also allows for a detailed examination of conflicting hypotheses surrounding the primary source of moisture during pyroCb development. All pyroCbs were associated with conditions very similar to those that produce dry thunderstorms. The current suite of automated forecasting applications predict only general trends in fire behavior, and specifically do not predict 1) extreme fire spread events and 2) injection of smoke to high altitudes. While these two exceptions are related, analysis of the Rim Fire shows that they are not predicted by the same set of conditions and variables. The combination of numerical weather prediction data and satellite observations exhibits great potential for improving automated regional-scale forecasts of fire behavior and smoke emissions.

Full access
C. A. Randles, A. M. da Silva, V. Buchard, P. R. Colarco, A. Darmenov, R. Govindaraju, A. Smirnov, B. Holben, R. Ferrare, J. Hair, Y. Shinozuka, and C. J. Flynn

Abstract

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), updates NASA’s previous satellite-era (1980 onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, version 5 (GEOS-5), Earth system model. As a major step toward a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, the MERRA-2 aerosol assimilation is documented, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. Initial validation and evaluation of the analyzed AOD fields are provided using independent observations from ground, aircraft, and shipborne instruments. The positive impact of the AOD assimilation on simulated aerosols is demonstrated by comparing MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. After showing the AOD evaluation, this paper takes a first look at aerosol–climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. The companion paper (Part II) evaluates and validates available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g., aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.

Full access
V. Buchard, C. A. Randles, A. M. da Silva, A. Darmenov, P. R. Colarco, R. Govindaraju, R. Ferrare, J. Hair, A. J. Beyersdorf, L. D. Ziemba, and H. Yu

Abstract

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is NASA’s latest reanalysis for the satellite era (1980 onward) using the Goddard Earth Observing System, version 5 (GEOS-5), Earth system model. MERRA-2 provides several improvements over its predecessor (MERRA-1), including aerosol assimilation for the entire period. MERRA-2 assimilates bias-corrected aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer and the Advanced Very High Resolution Radiometer instruments. Additionally, MERRA-2 assimilates (non bias corrected) AOD from the Multiangle Imaging SpectroRadiometer over bright surfaces and AOD from Aerosol Robotic Network sunphotometer stations. This paper, the second of a pair, summarizes the efforts to assess the quality of the MERRA-2 aerosol products. First, MERRA-2 aerosols are evaluated using independent observations. It is shown that the MERRA-2 absorption aerosol optical depth (AAOD) and ultraviolet aerosol index (AI) compare well with Ozone Monitoring Instrument observations. Next, aerosol vertical structure and surface fine particulate matter (PM2.5) are evaluated using available satellite, aircraft, and ground-based observations. While MERRA-2 generally compares well to these observations, the assimilation cannot correct for all deficiencies in the model (e.g., missing emissions). Such deficiencies can explain many of the biases with observations. Finally, a focus is placed on several major aerosol events to illustrate successes and weaknesses of the AOD assimilation: the Mount Pinatubo eruption, a Saharan dust transport episode, the California Rim Fire, and an extreme pollution event over China. The article concludes with a summary that points to best practices for using the MERRA-2 aerosol reanalysis in future studies.

Full access
Xiang-Yu Li, Hailong Wang, Jingyi Chen, Satoshi Endo, Geet George, Brian Cairns, Seethala Chellappan, Xubin Zeng, Simon Kirschler, Christiane Voigt, Armin Sorooshian, Ewan Crosbie, Gao Chen, Richard Anthony Ferrare, William I. Gustafson Jr., Johnathan W. Hair, Mary M. Kleb, Hongyu Liu, Richard Moore, David Painemal, Claire Robinson, Amy Jo Scarino, Michael Shook, Taylor J. Shingler, Kenneth Lee Thornhill, Florian Tornow, Heng Xiao, Luke D. Ziemba, and Paquita Zuidema

Abstract

Large-eddy simulation (LES) is able to capture key boundary layer (BL) turbulence and cloud processes. Yet, large-scale forcing and surface turbulent fluxes of sensible and latent heat are often poorly prescribed for LESs. We derive these quantities from measurements and reanalysis obtained for two cold-air outbreak (CAO) events during Phase I of the Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE) in February–March 2020. We study the two contrasting CAO cases by performing LES and test the sensitivity of BL structure and clouds to large-scale forcings and turbulent heat fluxes. Profiles of atmospheric state and large-scale divergence and surface turbulent heat fluxes obtained from ERA5 data agree reasonably well with those derived from ACTIVATE field measurements for both cases at the sampling time and location. Therefore, we adopt the time-evolving heat fluxes, wind, and advective tendencies profiles from ERA5 data to drive the LES. We find that large-scale thermodynamic advective tendencies and wind relaxations are important for the LES to capture the evolving observed BL meteorological states characterized by the hourly ERA5 data and validated by the observations. We show that the divergence (or vertical velocity) is important in regulating the BL growth driven by surface heat fluxes in LESs. The evolution of liquid water path is largely affected by the evolution of surface heat fluxes. The liquid water path simulated in LES agrees reasonably well with the ACTIVATE measurements. This study paves the path to investigate aerosol–cloud–meteorology interactions using LES informed and evaluated by ACTIVATE field measurements.

Restricted access
David A. Peterson, Laura H. Thapa, Pablo E. Saide, Amber J. Soja, Emily M. Gargulinski, Edward J. Hyer, Bernadett Weinzierl, Maximilian Dollner, Manuel Schöberl, Philippe P. Papin, Shobha Kondragunta, Christopher P. Camacho, Charles Ichoku, Richard H. Moore, Johnathan W. Hair, James H. Crawford, Philip E. Dennison, Olga V. Kalashnikova, Christel E. Bennese, Thaopaul P. Bui, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Hannah S. Halliday, Jose Jimenez, John B. Nowak, Claire Robinson, Kevin Sanchez, Taylor J. Shingler, Lee Thornhill, Elizabeth B. Wiggins, Edward Winstead, and Chuanyu Xu

Abstract

The 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field experiment obtained a diverse set of in-situ and remotely-sensed measurements before and during a pyrocumulonimbus (pyroCb) event over the Williams Flats fire in Washington State. This unique dataset confirms that pyroCb activity is an efficient vertical smoke transport pathway into the upper troposphere and lower stratosphere (UTLS). The magnitude of smoke plumes observed in the UTLS has increased significantly in recent years, following unprecedented wildfire and pyroCb activity observed worldwide. The FIREX-AQ pyroCb dataset is therefore extremely relevant to a broad community, providing the first measurements of fresh smoke exhaust in the upper-troposphere, including from within active pyroCb cloud tops. High-resolution remote sensing reveals that three plume cores linked to localized fire fronts, burning primarily in dense forest fuels, contributed to four total pyroCb “pulses”. Rapid changes in fire geometry and spatial extent dramatically influenced the magnitude, behavior, and duration of pyroCb activity. Cloud probe measurements and weather radar identify the presence of large ice particles within the pyroCb and hydrometers below cloud base, indicating precipitation development. The resulting feedbacks suggest that vertical smoke transport efficiency was reduced slightly when compared with intense pyroCb events reaching the lower stratosphere. Physical and optical aerosol property measurements in pyroCb exhaust are compared with previous assumptions. A large suite of aerosol and gas-phase chemistry measurements sets a foundation for future studies aimed at understanding the composition of smoke plumes lifted by pyroconvection into the UTLS and their role in the climate system.

Full access