Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: J. Hudson x
  • Refine by Access: All Content x
Clear All Modify Search
J. E. Frederick
and
R. D. Hudson

Abstract

Absorption of solar photons by nitric oxide in the wavelength ranges 181.3–183.5 and 189.4–191.6 nm leads to predissociation of the molecule in the mesosphere and upper stratosphere. Molecular oxygen controls the penetration of the required solar irradiance via absorption in the Schumann-Runge bands, while attenuation due to ozone becomes significant in the upper stratosphere. The calculation of the nitric oxide dissociation rate is complicated by the need to include all rotational fine structure in both the NO and O2 cross sections. The dissociation rate computed here for the upper mesosphere is a factor of 3.6 less than that reported in past work when currently accepted values of the oscillator strengths and solar irradiance are used. In addition, improved molecular parameters describing the O2 cross section predict less attenuation of the dissociation rate with decreasing altitude than results previously available.

Full access
J. E. Frederick
and
R. D. Hudson

Abstract

Knowledge of the agronomic production of odd hydrogen in the dissociation of water vapor is limited by uncertainties in the penetration of solar irradiance in the Schumann-Rung bands of O2 and by incomplete information concerning the products of photolysis at Lyman alpha. Consideration of an error sources involved in computing the H2o dissociation rate in the wavelength region 175–200 nm leads to an estimated uncertainty of ±35% at an altitude of 90 km for an overhead sun. The uncertainty increases with decreasing altitude such that the true dissociation rate at 60 km for an overhead sun lies between 0.45 and 1.55 times the result computed using the best input parameters currently available. Calculations of the H2o dissociation rate by Lyman alpha should include the variation in O2 opacity across the solar line width. Neglect of this can lead to errors as large as 50% at altitudes where the process is the major source of odd hydrogen.

Full access
J. E. Frederick
and
R. D. Hudson

Abstract

Oscillator strengths and predissociation linewidths deduced in recent studies predict a dissociation rate for O2 in the Schumann-Runge bands which is significantly larger in the upper stratosphere and lower mesosphere than previously believed. Error bars on molecular parameters required in the cross-section calculation translate into uncertainties in the dissociation rate which are less than ±10% at all altitudes where the Schumann-Runge bands are agronomically significant.

Full access
T. S. Hudson
,
A. Horseman
, and
J. Sugier

Abstract

The virtual ionosphere reflection height variation is investigated temporally and spatially, with specific reference to the Met Office’s lightning detection network, the Arrival Time Difference Network (ATDnet). Data from this network, operating at 13.7 kHz, and a propagation model built by the Met Office based upon published theory were used to investigate this variation, specifically with regard to diurnal, seasonal, and 11-yr solar cycle variation. Variation over these temporal scales is chosen, since they correspond with variation in solar irradiance upon the earth’s atmosphere, something known to drive ionosphere height variation. The virtual ionosphere reflection height is found to vary diurnally from ~65 km for the period 1000–1600 UTC to ~80 km for the period 2200–0400 UTC, from 1 June to 31 August 2013 inclusive. A similar magnitude of variation is also observed seasonally, with the ionosphere height for daytime in August 2013 being ~64 km and for December 2013 being ~76 km. No significant variation is observed between the minimum and maximum of the last solar cycle, with a difference in ionosphere height of ~1 km at most. The potential impacts of these results upon a very low-frequency (VLF) lightning detection network such as ATDnet are discussed, with solutions such as subnetting and wave-mode dominance analysis examined.

Full access
Kimberley J. Reid
,
Andrew D. King
,
Todd P. Lane
, and
Debra Hudson

Abstract

Studies of atmospheric rivers (ARs) over Australia have, so far, only focused on northwest cloudband–type weather systems. Here we perform a comprehensive analysis of AR climatology and impacts over Australia that includes not only northwesterly systems, but easterly and extratropical ARs also. We quantify the impact of ARs on mean and extreme rainfall including assessing how the origin location of ARs can alter their precipitation outcomes. We found a strong relationship between ARs and extreme rainfall in the agriculturally significant Murray–Daring basin region. We test the hypothesis that the tropical and subtropical originating ARs we observe in Australasia differ from canonical extratropical ARs by examining the vertical structure of ARs grouped by origin location. We found that in the moisture abundant tropics and subtropics, wind speed drives the intensity of ARs, while in the extratropics, the strength of an AR is largely determined by moisture availability. Finally, we examine the modulation of AR frequency by different climate modes. We find weak (but occasionally significant) correlations between ARs frequency and El Niño–Southern Oscillation, the Indian Ocean dipole, and the southern annular mode. However, there is a stronger relationship between the phases of the Madden–Julian oscillation and tropical AR frequency, which is an avenue for potential skill in forecasting ARs on subseasonal time scales.

Restricted access
G. Ohring
,
R. D. Bojkov
,
H.-J. Bolle
,
R. D. Hudson
, and
H. Volkert

Radiation is the driving force for the general circulation of the atmosphere and controls the Earth's climate. Ozone is responsible for the warm stratosphere and protects life on Earth from harmful solar ultraviolet radiation. In July 1959, the International Radiation Commission and the International Ozone Commission organized a joint meeting in Oxford, United Kingdom. The meeting took place just after the conclusion of the world's first international global observing program in the Earth sciences—the International Geophysical Year of 1957/58. The “Symposia on Radiation and Ozone” at the Oxford meeting included many reports with first results from the IGY, but there were also papers that foreshadowed future developments in atmospheric science. We take this opportunity on the 50th anniversary of the Oxford meeting to present a brief account of the roles of the Radiation and Ozone Commissions, and, more broadly, their interactions with the international science structure, in advancing atmospheric science over the last century. We also take a look at some of the topics discussed and the key figures at the 1959 Oxford meeting.

Full access
James G. Hudson
,
Timothy J. Garrett
,
Peter V. Hobbs
,
Scott R. Strader
,
Yonghong Xie
, and
Seong Soo Yum

Abstract

Enhancements of droplet concentrations in clouds affected by four ships were fairly accurately predicted from ship emission factors and plume and background cloud condensation nucleus (CCN) spectra. Ship exhausts thus accounted for the increased droplet concentrations in these “ship tracks.” Derived supersaturations were typical of marine stratus clouds, although there was evidence of some lowering of supersaturations in some ship tracks closer to the ships where CCN and droplet concentrations were very high.

Systematic differences were measured in the emission rates of CCN for different engines and fuels. Diesel engines burning low-grade marine fuel oil produced order of magnitude higher CCN emissions than turbine engines burning higher-grade fuel. Consequently, diesel ships burning low-grade fuel were responsible for nearly all of the observed ship track clouds. There is some evidence that fuel type is a better predictor of ship track potential than engine type.

Full access
C. Holstein-Rathlou
,
J. Merrison
,
J. J. Iversen
,
A. B. Jakobsen
,
R. Nicolajsen
,
P. Nørnberg
,
K. Rasmussen
,
A. Merlone
,
G. Lopardo
,
T. Hudson
,
D. Banfield
, and
G. Portyankina

Abstract

Reliable and accurate environmental sensing is a cornerstone of modern meteorology. This paper presents a laboratory environmental simulator capable of reproducing extreme environments and performing tests and calibrations of meteorological sensor systems under controlled conditions. This facility is available to the research community as well as industry and is intended to encourage advancement in the field of sensor metrology applied to meteorology and climatology. Discussion will be made of the temperature, pressure, humidity and wind flow control, and sensing systems with reference to specific sensor test programs and future research activities.

Full access
Kerri A. Pratt
,
Andrew J. Heymsfield
,
Cynthia H. Twohy
,
Shane M. Murphy
,
Paul J. DeMott
,
James G. Hudson
,
R. Subramanian
,
Zhien Wang
,
John H. Seinfeld
, and
Kimberly A. Prather

Abstract

During the Ice in Clouds Experiment–Layer Clouds (ICE-L), aged biomass-burning particles were identified within two orographic wave cloud regions over Wyoming using single-particle mass spectrometry and electron microscopy. Using a suite of instrumentation, particle chemistry was characterized in tandem with cloud microphysics. The aged biomass-burning particles comprised ∼30%–40% by number of the 0.1–1.0-μm clear-air particles and were composed of potassium, organic carbon, elemental carbon, and sulfate. Aerosol mass spectrometry measurements suggested these cloud-processed particles were predominantly sulfate by mass. The first cloud region sampled was characterized by primarily homogeneously nucleated ice particles formed at temperatures near −40°C. The second cloud period was characterized by high cloud droplet concentrations (∼150–300 cm−3) and lower heterogeneously nucleated ice concentrations (7–18 L−1) at cloud temperatures of −24° to −25°C. As expected for the observed particle chemistry and dynamics of the observed wave clouds, few significant differences were observed between the clear-air particles and cloud residues. However, suggestive of a possible heterogeneous nucleation mechanism within the first cloud region, ice residues showed enrichments in the number fractions of soot and mass fractions of black carbon, measured by a single-particle mass spectrometer and a single-particle soot photometer, respectively. In addition, enrichment of biomass-burning particles internally mixed with oxalic acid in both the homogeneously nucleated ice and cloud droplets compared to clear air suggests either preferential activation as cloud condensation nuclei or aqueous phase cloud processing.

Full access
A. K. Pavlov
,
A. Meyer
,
A. Rösel
,
L. Cohen
,
J. King
,
P. Itkin
,
J. Negrel
,
S. Gerland
,
S. R. Hudson
,
P. A. Dodd
,
L. de Steur
,
S. Mathisen
,
N. Cobbing
, and
M. A. Granskog

Abstract

Effective science communication is essential to share knowledge and recruit the next generation of researchers. Science communication to the general public can, however, be hampered by limited resources and a lack of incentives in the academic environment. Various social media platforms have recently emerged, providing free and simple science communication tools to reach the public and young people especially, an audience often missed by more conventional outreach initiatives. While individual researchers and large institutions are present on social media, smaller research groups are underrepresented. As a small group of oceanographers, sea ice scientists, and atmospheric scientists at the Norwegian Polar Institute, we share our experience establishing, developing, and maintaining a successful Arctic science communication initiative (@oceanseaicenpi) on Instagram, Twitter, and Facebook. The initiative is run entirely by a team of researchers with limited time and financial resources. It has built a broad audience of more than 7,000 followers, half of which is associated with the team’s Instagram account. To our knowledge, @oceanseaicenpi is one of the most successful Earth sciences Instagram accounts managed by researchers. The initiative has boosted the alternative metric scores of our publications and helped participating researchers become better writers and communicators. We hope to inspire and help other research groups by providing some guidelines on how to develop and conduct effective science communication via social media.

Open access