Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: J. M. Toole x
  • Refine by Access: All Content x
Clear All Modify Search
E. P. W. Horne and J. M. Toole

Abstract

Salinity-temperature-depth profilers measure temperature. directly but infer salinity from measurements of temperature, pressure and conductivity. Errors may therefore be introduced into the salinity data because of dissimilar response characteristics of the various sensors. This response mismatch usually manifests itself as the temperature signal lagging the conductivity signal in time. An error analysis demonstrates that amplitude underestimations of only 1% with a phase error of only 5° in the temperature data can result in a 20% overestimation of salinity variance. Techniques for removing the effects of sensor-response mismatches in the data are discussed and a new method is presented. The method involves the determination of correction filters for the data in physical space in terms of the response function of the sensors which is in frequency space. Thermohaline features on vertical scales smaller than 1 m appear resolvable in CTD data that are corrected with this technique.

Full access
S. P. Hayes, J. M. Toole, and L. J. Mangum

Abstract

An analysis of nine hydrographic sections collected in 1979–81 along 110°W in the equatorial Pacific Ocean is presented. Sections typically sampled the upper 500 m of the water column from 10°N to 3°S. Analysis concentrated on the repeated sections north of the equator. Examination of the variability of eastward transport indicates that the North Equatorial Countercurrent (NECC) and the Northern Subsurface Countercurrent (NSCC) cannot be distinguished solely on the basis of water-mass structure. However, using a potential density surface (σθ = 25.0) as a current boundary we find that on average the NSCC transports 13.7 × 106 m3 s−1 compared to only 8.3 × 106 m3 s−1 for the NECC. The NSCC flow is sufficiently stable so that meridional surface dynamic-height gradient remains a good index of zonal transport fluctuations. Variations in surface dynamic height observed in our data and in the EASTROPAC data indicate a seasonal cycle to the surface topography with large values for the equatorial and countercurrent depressions in boreal autumn and small values in spring. Broad meridional correlation scales for surface dynamic height were found; equatorial fluctuations were significantly positively correlated with variability at latitudes out to 5°N and significantly negatively correlated with variability at 9–10°N. The meridional and vertical structures or vertical displacement were reduced to two empirical orthogonal function (EOF) modes which contained 78% of the variance. These modes did not suggest simple dynamical interpretation in terms of first-vertical-mode linear waves.

Full access
John M. Toole, Huai-Min Zhang, and Michael J. Caruso

Abstract

The exchange of internal energy between the warm water pools of the tropical oceans and the overlying atmosphere is thought to play a central role in the evolving climate system of the earth. Spatial displacements of the warm water pools are observed on annual and interannual time scales, the latter most notably in the Pacific in association with ENSO. Whether such variations are also associated with net changes in pool energy content is investigated. Extending the work of Niiler and Stevenson and Walin who considered the time mean energy budgets for volumes bounded by an isotherm, the time-dependent version of their equation is analyzed in which the main terms involve the time variations of pool volume and average temperature, net energy exchange between the pool and overlying atmosphere, and the turbulent ocean fluxes across the pool boundaries. The dominant signal in the mean seasonal energy budgets of the warm pools is an approximate balance between the annual variation of air pool heat exchange and the time-varying energy storage; the inferred turbulent ocean heat flux per unit area across the bounding surface of the warm pools is relatively steady through the year. Interannual variations of the warm pools are characterized by changes in pool volumes and temperature on ENSO and longer time scales with indications of an out-of-phase relationship between pool pseudo-energy content and the Southern Oscillation index. The ability to diagnose the varying turbulent ocean fluxes exiting the warm water pools on these time scales was impeded by incompatibilities between ocean temperature data and several air–sea flux climatologies. For the unscaled Coupled Ocean–Atmosphere Data Set (COADS) flux product that yields sensibly downgradient ocean heat flux estimates, strong positive correlation between air pool heat flux and inferred turbulent ocean flux at the pool base on an interannual time scale is found. But, given the uncertainties in the air–sea fluxes, it is difficult to firmly attribute these bottom flux changes to variations in ocean mixing processes. Though disappointing in the short term, it is suggested that time-dependent warm pool energy budget analyses constitute powerful diagnostics for validating future air–sea flux climatologies.

Full access
J. M. Toole, R. C. Millard, Z. Wang, and S. Pu

Abstract

Hydrographic surveys were conducted off the Philippine coast in September 1987 and April 1988 as part of the United States/People's Republic of China cooperative research program. These cruises sampled the western Pacific Ocean where the North Equatorial Current (NEC) meets the western boundary and divides into the Kuroshio and Mindanao Currents. The requirement for mass conservation within a region enclosed by stations is utilized here to obtain absolute circulation fields for the two surveys. In both realizations, the surface flow of the NEC was observed to bifurcate near latitude 13°N; NEC flow poleward of this latitude turned north as the Kuroshio while flow to the south fed the Mindanao Current. Most striking was a twofold increase in the strength of the current system in spring 1988 as compared with fall 1987. We note that the observations in fall 1987 were obtained during the height of the 1986/87 El Niño, while those in spring 1988 were during a cold phase of the El Niño/Southern Oscillation. It is not clear how the observed current changes relate to the evolution of this event. The potential vorticity (Q) distributions of the surface waters were examined to explore the dynamics of the bifurcation. Within the NEC, Q was nearly constant (layer thickness change balanced meridional planetary vorticity variation). Within the Kuroshio and Mindanao currents, near constant Q (with magnitude comparable to that in the NEC) was also found with a balance between relative vorticity variation and layer depth change as would be expected for inertia] boundary currents.

Full access
Martin Claus, Richard J. Greatbatch, Peter Brandt, and John M. Toole

Abstract

The equatorial deep jets (EDJs) are a ubiquitous feature of the equatorial oceans; in the Atlantic Ocean, they are the dominant mode of interannual variability of the zonal flow at intermediate depth. On the basis of more than 10 years of moored observations of zonal velocity at 23°W, the vertically propagating EDJs are best described as superimposed oscillations of the 13th to the 23rd baroclinic modes with a dominant oscillation period for all modes of 1650 days. This period is close to the resonance period of the respective gravest equatorial basin mode for the dominant vertical modes 16 and 17. It is argued that since the equatorial basin mode is composed of linear equatorial waves, a linear reduced-gravity model can be employed for each baroclinic mode, driven by spatially homogeneous zonal forcing oscillating with the EDJ period. The fit of the model solutions to observations at 23°W yields a basinwide reconstruction of the EDJs and the associated vertical structure of their forcing. From the resulting vertical profile of mean power input and vertical energy flux on the equator, it follows that the EDJs are locally maintained over a considerable depth range, from 500 to 2500 m, with the maximum power input and vertical energy flux at 1300 m. The strong dissipation closely ties the apparent vertical propagation of energy to the vertical distribution of power input and, together with the EDJs’ prevailing downward phase propagation, requires the phase of the forcing of the EDJs to propagate downward.

Full access
R. Krishfield, J. Toole, A. Proshutinsky, and M-L. Timmermans

Abstract

An automated, easily deployed Ice-Tethered Profiler (ITP) instrument system, developed for deployment on perennial sea ice in the polar oceans to measure changes in upper ocean water properties in all seasons, is described, and representative data from prototype instruments are presented. The ITP instrument consists of three components: a surface subsystem that sits atop an ice floe; a weighted, plastic-jacketed wire-rope tether of arbitrary length (up to 800 m) suspended from the surface element; and an instrumented underwater unit that employs a traction drive to profile up and down the wire tether. ITPs profile the water column at a programmed sampling interval; after each profile, the underwater unit transfers two files holding oceanographic and engineering data to the surface unit using an inductive modem and from the surface instrument to a shore-based data server using an Iridium transmitter. The surface instrument also accumulates battery voltage readings, buoy temperature data, and locations from a GPS receiver at a specified interval (usually every hour) and transmits those data daily. Oceanographic and engineering data are processed, displayed, and made available in near–real time (available online at http://www.whoi.edu/itp). Six ITPs were deployed in the Arctic Ocean between 2004 and 2006 in the Beaufort gyre with various programmed sampling schedules of two to six one-way traverses per day between 10- and 750–760-m depth, providing more than 5300 profiles in all seasons (as of July 2007). The acquired CTD profile data document interesting spatial variations in the major water masses of the Canada Basin, show the double-diffusive thermohaline staircase that lies above the warm, salty Atlantic layer, measure seasonal surface mixed layer deepening, and document several mesoscale eddies. Augmenting the systems already deployed and to replace expiring systems, an international array of more than one dozen ITPs will be deployed as part of the Arctic Observing Network during the International Polar Year (IPY) period (2007–08) holding promise for more valuable real-time upper ocean observations for operational needs, to support studies of ocean processes, and to facilitate numerical model initialization and validation.

Full access
M.-L. Timmermans, R. Krishfield, S. Laney, and J. Toole

Abstract

Four ice-tethered profilers (ITPs), deployed between 2006 and 2009, have provided year-round dissolved oxygen (DO) measurements from the surface mixed layer to 760-m depth under the permanent sea ice cover in the Arctic Ocean. These ITPs drifted with the permanent ice pack and returned 2 one-way profiles per day of temperature, salinity, and DO. Long-term calibration drift of the oxygen sensor can be characterized and removed by referencing to recently calibrated ship DO observations on deep isotherms. Observed changes in the water column time series are due to both drift of the ITP into different water masses and seasonal variability, driven by both physical and biological processes within the water column. Several scientific examples are highlighted that demonstrate the considerable potential for sustained ITP-based DO measurements to better understand the Arctic Ocean circulation patterns and biogeochemical processes beneath the sea ice.

Full access
M. J. McPhaden, S. P. Hayus, L. J. Mangum, and J. M. Toole

Abstract

We describe variability in the western Pacific Ocean during the 1986–87 El Niño/Southern Oscillation (ENSO) event, with emphasis on time series measurements of currents, temperature, sea level and winds near the equator at 165°E. Zonal winds were anomalously westerly from mid-1986 to late 1987 and were punctuated by 2–10 m s−1 episodes of westerlies lasting about 10 days to 2 months. Zonal current in the upper 100-m surface layer responded to these wind variations typically within a week, in some cases with speeds exceeding 100 cm s−1 to the east. Zonal current variations in the thermocline below 100 m were generally less coherent with the local wires than currents near the surface. They were also generally less variable, although the Equation Undercurrent disappeared for 3–4 weeks in October-November 1987 at a time when the normal eastward directed zonal pressure gradient force reversed along the equator. Periods of intense and prolonged eastward flow in the surface layer were associated with a decrease in sea level by 10–20 cm at the end of 1986 and in May-August, 1987. Similarly, significant westward flow near the surface and in the thermocline in September-November 1987 was accompanied by rising sea level and a westward migration from the date line of surface waters >30°C. These results suggest that wind-driven zonal currents at the equator were important in the evolution of the mass and heat balance of the western Pacific during the 1986–87 ENSO, Conversely, meridional wind stress and meridional velocity energy levels at periods longer than 100 days on the equator were 5–10 times weaker than in the zonal direction and less obviously related to the evolution of the 1986–87 ENSO.

Full access
A. M. Thurnherr, L. C. St. Laurent, K. G. Speer, J. M. Toole, and J. R. Ledwell

Abstract

To close the global overturning circulation, the production and sinking of dense water at high latitudes must be balanced elsewhere by buoyancy gain and upward vertical motion. Hydrographic and microstructure observations from the Brazil Basin in the South Atlantic Ocean indicate that most of the abyssal mixing there takes place on the topographically rough flank of the midocean ridge. In previous studies it has been suggested that the high level of abyssal mixing observed on the ridge flank is primarily caused by breaking internal waves forced by tidal currents. Here, the results from a detailed analysis of velocity, hydrographic, and microstructure data from a ridge-flank canyon are presented. Two-year-long current-meter records indicate that within the canyon there is a significant along-axial mean flow down the density gradient toward the ridge crest. Five hundred meters above the canyon floor the kinetic energy in the subinertial band exceeds that associated with the semidiurnal tides by approximately a factor of 2. The mean dissipation of kinetic energy inside the canyon exceeds that above the ridge-flank topography by approximately a factor of 5. The largest dissipation values were observed downstream of a narrow, 1000-m-high sill that extends across the full width of the canyon. Along the entire canyon, there is a strong association between the presence of sills and along-axial density gradients, while there is no similar association between the presence of depressions and density gradients. Together, these observations suggest that sill-related mixing contributes at least as much to the diapycnal buoyancy flux in the canyon as tidally forced internal-wave breaking, which is not expected to be associated preferentially with sills. While only ≈15% of the interfacial area between Antarctic Bottom Water and North Atlantic Deep Water in the Brazil Basin lie inside canyons, the available data suggest that approximately one-half of the diapycnal buoyancy fluxes take place there. In comparison, the region above the ridge-flank topography accounts for about one-third of the buoyancy fluxes. The apparent importance of sill-related processes for mixing in ridge-flank canyons is therefore of global significance, especially considering that such canyons occur on average every 50 km along 2/3 of the global midocean ridge system, and that sills partially block the canyon axes every few tens of kilometers.

Full access
J. R. Ledwell, L. C. St. Laurent, J. B. Girton, and J. M. Toole

Abstract

The vertical dispersion of a tracer released on a density surface near 1500-m depth in the Antarctic Circumpolar Current west of Drake Passage indicates that the diapycnal diffusivity, averaged over 1 yr and over tens of thousands of square kilometers, is (1.3 ± 0.2) × 10−5 m2 s−1. Diapycnal diffusivity estimated from turbulent kinetic energy dissipation measurements about the area occupied by the tracer in austral summer 2010 was somewhat less, but still within a factor of 2, at (0.75 ± 0.07) × 10−5 m2 s−1. Turbulent diapycnal mixing of this intensity is characteristic of the midlatitude ocean interior, where the energy for mixing is believed to derive from internal wave breaking. Indeed, despite the frequent and intense atmospheric forcing experienced by the Southern Ocean, the amplitude of finescale velocity shear sampled about the tracer was similar to background amplitudes in the midlatitude ocean, with levels elevated to only 20%–50% above the Garrett–Munk reference spectrum. These results add to a long line of evidence that diapycnal mixing in the interior middepth ocean is weak and is likely too small to dictate the middepth meridional overturning circulation of the ocean.

Full access