Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: J. Marshall Shepherd x
  • All content x
Clear All Modify Search
J. Marshall Shepherd

Abstract

Precipitation is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment’s impact on precipitation (land use, aerosols, thermal properties) will be increasingly important in ongoing climate diagnostics and prediction, Global Water and Energy Cycle (GWEC) analysis and modeling, weather forecasting, freshwater resource management, urban planning–design, and land–atmosphere–ocean interface processes. These facts are particularly critical if current projections for global urban growth are accurate.

The goal of this paper is to provide a concise review of recent (1990–present) studies related to how the urban environment affects precipitation. In addition to providing a synopsis of current work, recent findings are placed in context with historical investigations such as Metropolitan Meteorological Experiment (METROMEX) studies. Both observational and modeling studies of urban-induced rainfall are discussed. Additionally, a discussion of the relative roles of urban dynamic and microphysical (e.g., aerosol) processes is presented. The paper closes with a set of recommendations for what observations and capabilities are needed in the future to advance our understanding of the processes.

Full access
J. Marshall Shepherd

Abstract

have responded with critical comments as to whether urbanization-enhanced precipitation is maximized in the south-southeast of Atlanta, Georgia, as was recently documented by The reply herein offers both general and specific responses to the issues raised by

Full access
Neil Debbage and J. Marshall Shepherd

Abstract

The 2009 Atlanta flood was a historic event that resulted in catastrophic damage throughout the metropolitan area. The flood was the product of several hydrometeorological processes, including moist antecedent conditions, ample atmospheric moisture, and mesoscale training. Additionally, previous studies hypothesized that the urban environment of Atlanta altered the location and/or overall quantities of precipitation and runoff that ultimately produced the flood. This hypothesis was quantitatively evaluated by conducting a modeling case study that utilized the Weather Research and Forecasting Model. Two model runs were performed: 1) an urban run designed to accurately depict the flood event and 2) a nonurban simulation where the urban footprint of Atlanta was replaced with natural vegetation. Comparing the output from the two simulations revealed that interactions with the urban environment enhanced the precipitation and runoff associated with the flood. Specifically, the nonurban model underestimated the cumulative precipitation by approximately 100 mm in the area downwind of Atlanta where urban rainfall enhancement was hypothesized. This notable difference was due to the increased surface convergence observed in the urban simulation, which was likely attributable to the enhanced surface roughness and thermal properties of the urban environment. The findings expand upon previous research focused on urban rainfall effects since they demonstrate that urban interactions can influence mesoscale hydrometeorological characteristics during events with prominent synoptic-scale forcing. Finally, from an urban planning perspective, the results highlight a potential two-pronged vulnerability of urban environments to extreme rainfall, as they may enhance both the initial precipitation and subsequent runoff.

Full access
Mengun Jin and J. Marshall Shepherd
Full access
J. Marshall Shepherd and Steven J. Burian

Abstract

There is increasing evidence that large coastal cities, like Houston, Texas, can influence weather through complex urban land use–weather–climate feedbacks. Recent work in the literature establishes the existence of enhanced lightning activity over and downwind of Houston. Since lightning is a signature of convection in the atmosphere, it would seem reasonable that urbanized Houston would also impact the distribution of rainfall. This paper presents results using data from the world’s first satellite-based precipitation radar (PR) aboard the Tropical Rainfall Measuring Mission (TRMM) and ground-based rain gauges to quantify rainfall anomalies that we hypothesize to be linked to extensive urbanization in the Houston area. It is one of the first rigorous efforts to quantify an urban-induced rainfall anomaly near a major U.S. coastal city and one of the first applications of space-borne radar data to the problem. Quantitative results reveal the presence of annual and warm season rainfall anomalies over and downwind of Houston. Several hypotheses have surfaced to explain how the sea breeze, coastline curvature, or urbanized Houston environment interacts with the atmospheric system to impact rainfall. This paper presents evidence that the urban heat island’s influence is of primary significance in causing the observed precipitation anomalies. Precipitation is a key link in the global water cycle and a proper understanding of its temporal and spatial character will have broad implications in ongoing climate diagnostics and prediction, Global Water and Energy Cycle (GWEC) analysis and modeling, weather forecasting, freshwater resource management, and land–atmosphere–ocean interface processes.

Full access
Andrew Grundstein, J. Marshall Shepherd, and Sarah Duzinski

Abstract

Inflatable bounce houses provide a popular summer activity for children. Injuries such as sprains and fractures are widely acknowledged, but there is less awareness about possible hazards from excessive heat exposure. This study aims to identify whether conditions in the bounce house are more oppressive than ambient conditions on a typical summer day in Athens, Georgia. Results show that maximum air temperatures in the bounce house can reach up to 3.7°C (6.7°F) greater than ambient conditions, and peak heat index values may exceed outdoor conditions by 4.5°C (8.1°F). When considered within the context of the National Weather Service heat index safety categories, the bounce house reached the “danger” level in more than half of the observations, compared with only 7% of observations for ambient conditions. Parents and caregivers should be aware of heat-related hazards in bounce houses and closely monitor children, adjusting or canceling activities as conditions become more oppressive.

Full access
Lauren M. Hand and J. Marshall Shepherd

Abstract

This study used 9 yr (1998–2006) of warm-season (June–September) mean daily cumulative rainfall data from both the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis and rain gauge stations to examine spatial variability in warm-season rainfall events around Oklahoma City (OKC). It was hypothesized that with warm-season rainfall variability, under weakly forced conditions, a rainfall anomaly would be present in climatological downwind areas of OKC. Results from both satellite and gauge-based analyses revealed that the north-northeastern (NNE) regions of the metropolitan OKC area were statistically wetter than other regions. Climatological sounding and reanalysis data revealed that, on average, the NNE area of OKC was the climatologically downwind region, confirming that precipitation modification by the urban environment may be more dominant than agricultural/topographic influences on weakly forced days. The study also established that satellite precipitation estimates capture spatial rainfall variability as well as traditional ground-based resources do. TRMM products slightly underestimate the precipitation recorded by gauges, but the correlation R improves dramatically when the analysis is restricted to mean daily rainfall estimates from OKC urban grid cells containing multiple gauge stations (R 2 = 0.878). It was also quantitatively confirmed, using a relatively new concentration factor analysis, that prevailing wind–rainfall yields were consistent with the overall framework of an urban rainfall effect. Overall, the study establishes a prototype method for utilizing satellite-based rainfall estimates to examine rainfall modification by urbanization on global scales and in parts of the world that are not well instrumented with rain gauge or radar networks.

Full access
J. Marshall Shepherd, Harold Pierce, and Andrew J. Negri

Abstract

Data from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar (PR) were employed to identify warm-season rainfall (1998–2000) patterns around Atlanta, Georgia; Montgomery, Alabama; Nashville, Tennessee; and San Antonio, Waco, and Dallas, Texas. Results reveal an average increase of about 28% in monthly rainfall rates within 30–60 km downwind of the metropolis, with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48%–116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with the Metropolitan Meteorological Experiment (METROMEX) studies of St. Louis, Missouri, almost two decades ago and with more recent studies near Atlanta. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.

Full access
J. Marshall Shepherd, Olayiwola O. Taylor, and Carlos Garza

Abstract

Because Atlanta, Georgia, is a model of rapid transition from forest/agriculture land use to urbanization, NASA and other agencies have initiated programs to identify and understand how urban heat islands (UHIs) impact the environment in terms of land use, air quality, health, climate, and other factors. Atlanta's UHI may also impact the regional water cycle by inadvertent forcing of precipitating cloud systems. Yet, a focused assessment of the role of urban-induced rainfall in Atlanta has not been a primary focus of past efforts. Several observational and climatological studies have theorized that UHIs can have a significant influence on mesoscale circulations and resulting convection. Using spaceborne rain radar and a limited network of irregularly spaced, ground-based rain gauges, evidence that the Atlanta and Houston, Dallas, and San Antonio, Texas, urban areas may modify cloud and precipitation development was recently found.

To validate these recent satellite-based findings, it was determined that a higher density of rainfall gauges would be required for future work. The NASA-sponsored Study of Precipitation Anomalies from Widespread Urban Landuse (SPRAWL) seeks to further address the impact of urban Atlanta on precipitation variability by implementing a dense rain gauge network to validate spaceborne rainfall estimates. To optimize gauge location to a given set of criteria, a geographical information system (GIS) aided by a spatial decision support system (DSS) has been developed. A multicriteria decision analysis (MCDA) technique was developed to locate optimal sites in accordance to the guidelines defined by the World Meteorological Organization (WMO). A multicriteria analysis model for the optimization of prospective sites was applied to identify prime locations for the tipping-bucket rain gauges. The MCDA design required development of a spatial model by applying a series of linear programming methods, with the aid of spatial analytical techniques, in order to identify land sites that meet a particular set of criteria.

Full access
Joshua D. Durkee, Thomas L. Mote, and J. Marshall Shepherd

Abstract

This study uses a database consisting of 330 austral warm-season (October–May) mesoscale convective complexes (MCCs) during 1998–2007 to determine the contribution of MCCs to rainfall across subtropical South America (SSA). A unique precipitation analysis is conducted using Tropical Rainfall Measuring Mission (TRMM) 3B42 version 6 data. The average MCC produces 15.7 mm of rainfall across 381 000 km2, with a volume of 7.0 km3. MCCs in SSA have the largest precipitation areas compared to North American and African systems. MCCs accounted for 15%–21% of the total rainfall across portions of northern Argentina and Paraguay during 1998–2007. However, MCCs account for larger fractions of the total precipitation when analyzed on monthly and warm-season time scales. Widespread MCC rainfall contributions of 11%–20% were observed in all months. MCCs accounted for 20%–30% of the total rainfall between November and February, and 30%–50% in December, primarily across northern Argentina and Paraguay. MCCs also produced 25%–66% of the total rainfall across portions of west-central Argentina. Similar MCC rainfall contributions were observed during warm seasons. An MCC impact factor (MIF) was developed to determine the overall impact of MCC rainfall on warm-season precipitation anomalies. Results show that the greatest impacts on precipitation anomalies from MCC rainfall were located near the center of the La Plata basin. This study demonstrates that MCCs in SSA produce widespread precipitation that contributes substantially to the total rainfall across the region.

Full access