Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: J. Mueller x
  • Refine by Access: All Content x
Clear All Modify Search
L. Cucurull
and
M. J. Mueller

Abstract

Observing system simulation experiments (OSSEs) were conducted to evaluate the potential impact of the six Global Navigation Satellite System (GNSS) radio occultation (RO) receiver satellites in equatorial orbit from the initially proposed Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, known as COSMIC-2A. Furthermore, the added value of the high-inclination component of the proposed mission was investigated by considering a few alternative architecture designs, including the originally proposed polar constellation of six satellites (COSMIC-2B), a constellation with a reduced number of RO receiving satellites, and a constellation of six satellites but with fewer observations in the lower troposphere. The 2015 year version of the operational three-dimensional ensemble–variational data assimilation system of the National Centers for Environment Prediction (NCEP) was used to run the OSSEs. Observations were simulated and assimilated using the same methodology and their errors assumed uncorrelated. The largest benefit from the assimilation of COSMIC-2A, with denser equatorial coverage, was to improve tropical winds, and its impact was found to be overall neutral in the extratropics. When soundings from the high-inclination orbit were assimilated in addition to COSMIC-2A, positive benefits were found globally, confirming that a high-inclination orbit constellation of RO receiving satellites is necessary to improve weather forecast skill globally. The largest impact from reducing COSMIC-2B from six to four satellites was to slightly degrade weather forecast skill in the Northern Hemisphere extratropics. The impact of degrading COSMIC-2B to the COSMIC level of accuracy, in terms of penetration into the lower troposphere, was mostly neutral.

Free access
L. Cucurull
and
M. J. Mueller

Abstract

Observing system simulation experiments (OSSEs) were conducted to evaluate the potential impact of the six Global Navigation Satellite System (GNSS) radio occultation (RO) receiver satellites in equatorial orbit from the initially proposed Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, known as COSMIC-2A. Furthermore, the added value of the high-inclination component of the proposed mission was investigated by considering a few alternative architecture designs, including the originally proposed polar constellation of six satellites (COSMIC-2B), a constellation with a reduced number of RO receiving satellites, and a constellation of six satellites but with fewer observations in the lower troposphere. The 2015 year version of the operational three-dimensional ensemble–variational data assimilation system of the National Centers for Environment Prediction (NCEP) was used to run the OSSEs. Observations were simulated and assimilated using the same methodology and their errors assumed uncorrelated. The largest benefit from the assimilation of COSMIC-2A, with denser equatorial coverage, was to improve tropical winds, and its impact was found to be overall neutral in the extratropics. When soundings from the high-inclination orbit were assimilated in addition to COSMIC-2A, positive benefits were found globally, confirming that a high-inclination orbit constellation of RO receiving satellites is necessary to improve weather forecast skill globally. The largest impact from reducing COSMIC-2B from six to four satellites was to slightly degrade weather forecast skill in the Northern Hemisphere extratropics. The impact of degrading COSMIC-2B to the COSMIC level of accuracy, in terms of penetration into the lower troposphere, was mostly neutral.

Full access
Peter J. Eccles
and
Eugene A. Mueller

Abstract

Direct measurements of attenuation due to liquid water content (LWC) between two points in the common beam of a dual-wavelength radar system will be possible using a real-time digital processor of radar signals presently under construction. Precise measurements of attenuation are possible since accurate absolute calibration of the radars is not required. A resolution of 0.65 dB km−1 is possible in contiguous kilometer sections along the beam axis with an average over 32 independent values of echo power. In terms of LWC this is a resolution of ∼2 mg m−3 of precipitation using a new relation
MA0.787
where M is the liquid water content (gm m−2) and A the attenuation rate (dB km−1) along the common beam.
Full access
Kevin J. Mueller
,
Junjie Liu
,
Will McCarty
, and
Ron Gelaro

Abstract

This study examines the benefit of assimilating cloud motion vector (CMV) wind observations obtained from the Multiangle Imaging SpectroRadiometer (MISR) within a Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), configuration of the Goddard Earth Observing System-5 (GEOS-5) model data assimilation system (DAS). Available in near–real time (NRT) and with a record dating back to 1999, MISR CMVs boast pole-to-pole coverage and geometric height assignment that is complementary to the suite of atmospheric motion vectors (AMVs) included in the MERRA-2 standard. Experiments spanning September–November of 2014 and March–May of 2015 estimated relative MISR CMV impact on the 24-h forecast error reduction with an adjoint-based forecast sensitivity method. MISR CMV were more consistently beneficial and provided twice as large a mean forecast benefit when larger uncertainties were assigned to the less accurate component of the CMV oriented along the MISR satellite ground track, as opposed to when equal uncertainties were assigned to the eastward and northward components as in previous studies. Assimilating only the cross-track component provided 60% of the benefit of both components. When optimally assimilated, MISR CMV proved broadly beneficial throughout the Earth, with the greatest benefit evident at high latitudes where there is a confluence of more frequent CMV coverage and gaps in coverage from other MERRA-2 wind observations. Globally, MISR represented 1.6% of the total forecast benefit, whereas regionally that percentage was as large as 3.7%.

Full access
G. Zibordi
,
S. B. Hooker
,
J. Mueller
, and
G. Lazin

Abstract

Spectral immersion factors, I f (λ), account for the difference between the in-air and in-water absolute response of submersible radiometers and are required to properly apply the in-air absolute calibration of the sensor when used underwater. The use of the so-called typical values for a series of in-water radiometers is a source of uncertainty because of intrinsic instrument-to-instrument differences in the optics. To investigate this source of uncertainty, in addition to uncertainties associated with determining the immersion factors using a laboratory method, a sample of nine radiometers from the same series of instruments was characterized by three different laboratories. A comparison of the immersion factor characterizations from the three laboratories indicates average intralaboratory measurement repeatabilities ranging from 0.3% to 0.6%, which were evaluated using multiple characterizations of the same reference radiometer and defined by two standard deviations. Interlaboratory relative uncertainties, evaluated with I f (λ) data from the nine sample radiometers, show average percent differences ranging from −0.5% to 0.6%. The dispersion of I f (λ) values across all the radiometers show values up to 5% in the red part of the spectrum with a spectral average of 2% (defined by two standard deviations). Typical I f (λ) values, computed with data from the so-called trusted radiometers (i.e., those not showing extreme outlier values), are also presented with their maximum uncertainties and a discussion on their spectral dependence.

Full access
Michael J. Mueller
,
Kelly M. Mahoney
, and
Mimi Hughes

Abstract

A series of precipitation events impacted the Pacific Northwest during the first two weeks of November 2006. This sequence was punctuated by a particularly potent inland-penetrating atmospheric river (AR) that produced record-breaking precipitation across the region during 5–7 November. The precipitation caused destructive flooding as far inland as Montana’s Glacier National Park, 800 km from the Pacific Ocean. This study investigates the inland penetration of moisture during the event using a 4–1.33-km grid spacing configuration of the Weather Research and Forecasting (WRF) modeling system. A high-resolution simulation allowed an analysis of interactions between the strong AR and terrain features such as the Cascade Mountains and the Columbia River Gorge (CR Gorge).

Moisture transport in the vicinity of the Cascades is assessed using various metrics. The most efficient pathway for moisture penetration was through the gap (i.e., CR Gap) between Mt. Adams and Mt. Hood, which includes the CR Gorge. While the CR Gap is a path of least resistance through the Cascades, most of the total moisture transport that survived transit past the Cascades overtopped the mountain barrier itself. This is due to the disparity between the length of the ridge (~800 km) and relatively narrow width of the CR Gap (~93 km). Moisture transport reductions were larger across the Washington Cascades and the southern-central Oregon Cascades than through the CR Gap. During the simulation, drying ratios through the CR Gap (9.3%) were notably less than over adjacent terrain (19.6%–30.6%). Drying ratios decreased as moisture transport intensity increased.

Full access
Michael J. Mueller
,
Bachir Annane
,
S. Mark Leidner
, and
Lidia Cucurull

Abstract

An observing system experiment was conducted to assess the impact of wind products derived from the Cyclone Global Navigation Satellite System (CYGNSS) on tropical cyclone track, maximum 10-m wind speed V max, and minimum sea level pressure forecasts. The experiment used a global data assimilation and forecast system, and the impact of both CYGNSS-derived scalar and vector wind retrievals was investigated. The CYGNSS-derived vector wind products were generated by optimally combining the scalar winds and a gridded a priori vector field. Additional tests investigated the impact of CYGNSS data on a regional model through the impact of lateral boundary and initial conditions from the global model during the developmental phase of Hurricane Michael (2018). In the global model, statistically significant track forecast improvements of 20–40 km were found in the first 60 h. The V max forecasts showed some significant degradations of ~2 kt at a few lead times, especially in the first 24 h. At most lead times, impacts were not statistically significant. Degradations in V max for Hurricane Michael in the global model were largely attributable to a failure of the CYGNSS-derived scalar wind test to produce rapid intensification in the forecast initialized at 0000 UTC 7 October. The storm in this test was notably less organized and symmetrical than in the control and CYGNSS-derived vector wind test. The regional model used initial and lateral boundary conditions from the global control and CYGNSS scalar wind tests. The regional forecasts showed large improvements in track, V max, and minimum sea level pressure.

Full access
C. Mueller
,
T. Saxen
,
R. Roberts
,
J. Wilson
,
T. Betancourt
,
S. Dettling
,
N. Oien
, and
J. Yee

Abstract

The Auto-Nowcast System (ANC), a software system that produces time- and space-specific, routine (every 5 min) short-term (0–1 h) nowcasts of storm location, is presented. A primary component of ANC is its ability to identify and characterize boundary layer convergence lines. Boundary layer information is used along with storm and cloud characteristics to augment extrapolation with nowcasts of storm initiation, growth, and dissipation. A fuzzy logic routine is used to combine predictor fields that are based on observations (radar, satellite, sounding, mesonet, and profiler), a numerical boundary layer model and its adjoint, forecaster input, and feature detection algorithms. The ANC methodology is illustrated using nowcasts of storm initiation, growth, and dissipation. Statistical verification shows that ANC is able to routinely improve over extrapolation and persistence.

Full access
Kelly Mahoney
,
Dustin Swales
,
Michael J. Mueller
,
Michael Alexander
,
Mimi Hughes
, and
Kelsey Malloy

Abstract

Atmospheric rivers (ARs) are well-known producers of precipitation along the U.S. West Coast. Depending on their intensity, orientation, and location of landfall, some ARs penetrate inland and cause heavy rainfall and flooding hundreds of miles from the coast. Climate change is projected to potentially alter a variety of AR characteristics and impacts. This study examines potential future changes in moisture transport and precipitation intensity, type, and distribution for a high-impact landfalling AR event in the U.S. Pacific Northwest using an ensemble of high-resolution numerical simulations produced under projected future thermodynamic changes.

Results indicate increased total precipitation in all future simulations, although there is considerable model spread in both domain-averaged and localized inland precipitation totals. Notable precipitation enhancements across inland locations such as Idaho’s Sawtooth Mountain Range are present in four out of six future simulations. The most marked inland precipitation increases are shown to occur by way of stronger and deeper moisture transport that more effectively crosses Oregon’s Coastal and Cascade mountain ranges, essentially “spilling over” into the Snake River Valley and fueling orographic precipitation in the Sawtooth Mountains. Moisture transport enhancements are shown to have both thermodynamic and dynamic contributions, with both enhanced absolute environmental moisture and localized lower- and midlevel dynamics contributing to amplified inland moisture penetration. Precipitation that fell as snow in the present-day simulation becomes rain in the future simulations for many mid- and high-elevation locations, suggesting potential for enhanced flood risk for these regions in future climate instances of similar events.

Full access
L. Cucurull
,
R. Atlas
,
R. Li
,
M. J. Mueller
, and
R. N. Hoffman

Abstract

Experiments with a global observing system simulation experiment (OSSE) system based on the recent 7-km-resolution NASA nature run (G5NR) were conducted to determine the potential value of proposed Global Navigation Satellite System (GNSS) radio occultation (RO) constellations in current operational numerical weather prediction systems. The RO observations were simulated with the geographic sampling expected from the original planned Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) system, with six equatorial (total of ~6000 soundings per day) and six polar (total of ~6000 soundings per day) receiver satellites. The experiments also accounted for the expected improved vertical coverage provided by the Jet Propulsion Laboratory RO receivers on board COSMIC-2. Except that RO observations were simulated and assimilated as refractivities, the 2015 version of the NCEP’s operational data assimilation system was used to run the OSSEs. The OSSEs quantified the impact of RO observations on global weather analyses and forecasts and the impact of adding explicit errors to the simulation of perfect RO profiles. The inclusion or exclusion of explicit errors had small, statistically insignificant impacts on results. The impact of RO observations was found to increase the length of the useful forecasts. In experiments with explicit errors, these increases were found to be 0.6 h in the Northern Hemisphere extratropics (a 0.4% improvement), 5.9 h in the Southern Hemisphere extratropics (a significant 4.0% improvement), and 12.1 h in the tropics (a very substantial 28.4% improvement).

Full access