Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: J. P. KERR x
  • Refine by Access: All Content x
Clear All Modify Search
J. P. Kerr
,
G. W. Thurtell
, and
C. B. Tanner

Abstract

The silicon photovoltaic solar cell has made possible the construction of simple pyranometers of reasonable accuracy. Cell response is linear, temperature sensitivity is low, and spectral response does not cause serious error, provided the cell is used in open sunlight.

The solar cell has been mounted beneath a special diffusing unit to obtain a rugged pyranometer with excellent cosine response. This pyranometer has been coupled with a solid state integrator developed for this purpose. The integral is recorded with either visual or printing counters.

Tests were made during September 1965 through February 1966 when low solar altitude and severe operating conditions would cause greatest error; and again during March 1966 through July 1966 when solar radiation intensities were high. For the first period the standard error of estimate and the solar radiation means were, respectively, 84 and 2200 Wh m−2 day−1. For the second period the corresponding values were 158 and 5630 Wh m−2 day−1.

Full access
J. P. KERR
,
G. W. THURTELL
, and
C. B. TANNER

Abstract

The time and space variability of global radiation have been studied using data collected from a mesoscale network of integrating pyranometers established in Wisconsin, for the period December 1966 through June 1967. The data have been normalized so that they are expressed as a percent of the clear day global radiation. The atmospheric transmission coefficient over the State changes from about 0.75 in winter to 0.60 in summer. For a typical month, the standard deviations of the State daily mean varied from a few percent up to 50 percent of the State mean. Mean day-to-day changes of approximately ± 18 percent-radiation were recorded. From use of records for any one site in the State, the global radiation elsewhere in the State can be estimated with an approximate standard error of ±25 percent or less of the clear day radiation on a daily basis, ± 15 percent or less on a 5-day basis, and ± 10 percent or less on a monthly basis. Alternatively, if the network data from the sites surrounding the unknown point can be used for interpolation, the global radiation anywhere in the State can be estimated with an approximate standard error of ± 20 percent or less of the clear day radiation on a daily basis, ± 10 percent or less on a 5-day basis, and ± 6 percent or less on a monthly basis.

Full access
A. Chehbouni
,
E. G. Njoku
,
J-P. Lhomme
, and
Y. H. Kerr

Abstract

Successful prediction of possible climate change depends on realistic parameterization of land surface processes in climate models. Such parameterizations must take appropriate account of the heterogeneities that are found in most earth surfaces. In this study, different average strategies for aggregating patch-scale heterogeneities to scales that are appropriate for mesoscale and climate model gods have been explored. A simple model for estimating area-average “effective” surface flux parameters is evaluated. The model satisfies the energy balance equation and leads to a set of relationships between local and effective parameters in the governing equations for the surface energy balance. One outcome is that the resulting effective surface temperature is not a simple area-weighted average of component temperatures, but is a function of a specific combination of different resistance of the individual surface elements. A set of heterogeneous surfaces has been simulated to study the effective fluxes obtained using the described model. A comparison with results obtained by other investigators using different averaging methods is also performed.

Full access
P. J. Sellers
,
B. W. Meeson
,
J. Closs
,
J. Collatz
,
F. Corprew
,
D. Dazlich
,
F. G. Hall
,
Y. Kerr
,
R. Koster
,
S. Los
,
K. Mitchell
,
J. McManus
,
D. Myers
,
K.-J. Sun
, and
P. Try

A comprehensive series of global datasets for land-atmosphere models has been collected, formatted to a common grid, and released on a set of CD-ROMs. This paper describes the motivation for and the contents of the dataset.

In June of 1992, an interdisciplinary earth science workshop was convened in Columbia, Maryland, to assess progress in land-atmosphere research, specifically in the areas of models, satellite data algorithms, and field experiments. At the workshop, representatives of the land-atmosphere modeling community defined a need for global datasets to prescribe boundary conditions, initialize state variables, and provide near-surface meteorological and radiative forcings for their models. The International Satellite Land Surface Climatology Project (ISLSCP), a part of the Global Energy and Water Cycle Experiment, worked with the Distributed Active Archive Center of the National Aeronautics and Space Administration Goddard Space Flight Center to bring the required datasets together in a usable format. The data have since been released on a collection of CD-ROMs.

The datasets on the CD-ROMs are grouped under the following headings: vegetation; hydrology and soils; snow, ice, and oceans; radiation and clouds; and near-surface meteorology. All datasets cover the period 1987–88, and all but a few are spatially continuous over the earth's land surface. All have been mapped to a common 1° × 1° equal-angle grid. The temporal frequency for most of the datasets is monthly. A few of the near-surface meteorological parameters are available both as six-hourly values and as monthly means.

Full access
Alan E. E. Rogers
,
Philip J. Erickson
,
Larisa P. Goncharenko
,
Omar B. Alam
,
John Noto
,
Robert B. Kerr
, and
Sudha Kapali

Abstract

Ground-based spectrometers have been deployed to measure the concentration, velocity, and temperature of ozone in the mesosphere and lower thermosphere (MLT), using low-cost satellite television electronics to observe the 11.072-GHz line of ozone. The ozone line was observed at an altitude near 95 km at 38°N, 71°W using three spectrometers located at the Massachusetts Institute of Technology’s Haystack Observatory (Westford, Massachusetts), Chelmsford High School (Chelmsford, Massachusetts), and Union College (Schenectady, New York), each pointed south at 8° elevation. Observations from 2009 through 2014 were used to derive the nightly averaged seasonal variation of the 95-km altitude meridional wind velocity, as well as the seasonally averaged variation of the meridional wind with local solar time. The results indicate a seasonal trend in which the winds at 95 km are directed southward at about 10 m s−1 in the summer of the Northern Hemisphere and northward at about 10 m s−1 in the winter. Nighttime data from −5 to +5 local solar time show a gradual transition of the meridional wind velocity from about −20 to 20 m s−1. These variations correlate well with nighttime wind measurements using 557.7-nm optical airglow observations from the Millstone Hill high-resolution Fábry–Perot interferometer (FPI) in Westford.

Full access
H. Lievens
,
A. Al Bitar
,
N. E. C. Verhoest
,
F. Cabot
,
G. J. M. De Lannoy
,
M. Drusch
,
G. Dumedah
,
H.-J. Hendricks Franssen
,
Y. Kerr
,
S. K. Tomer
,
B. Martens
,
O. Merlin
,
M. Pan
,
M. J. van den Berg
,
H. Vereecken
,
J. P. Walker
,
E. F. Wood
, and
V. R. N. Pauwels

Abstract

The Soil Moisture Ocean Salinity (SMOS) satellite mission routinely provides global multiangular observations of brightness temperature TB at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture SM. To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multiangular and multipolarization top of the atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity model coupled with the Community Microwave Emission Modelling Platform for simulating SMOS TB observations over the upper Mississippi basin, United States. For a period of 2 years (2010–11), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin-averaged bias of 30 K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After cumulative distribution function matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30 K to less than 5 K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation.

Full access
Peter Bissolli
,
Catherine Ganter
,
A. Mekonnen
,
Ahira Sánchez-Lugo
,
Zhiwei Zhu
,
A. Abida
,
W. Agyakwah
,
Laura S. Aldeco
,
Eric J. Alfaro
,
Lincoln. M. Alves
,
Jorge A. Amador
,
B. Andrade
,
Grinia Avalos
,
Stephan Bader
,
Julian Baez
,
M. Yu Bardin
,
E. Bekele
,
Guillem Martín Bellido
,
Christine Berne
,
A. E. Bhuiyan
,
Oliver Bochníček
,
Brandon Bukunt
,
Blanca Calderón
,
Jayaka Campbell
,
Elise Chandler
,
Hua Chen
,
Vincent Y. S. Cheng
,
Leonardo Clarke
,
Kris Correa
,
Felipe Costa
,
Lenka Crhova
,
Ana P. Cunha
,
Veerle De Bock
,
Mesut Demircan
,
Ricardo Deus
,
K. R. Dhurmea
,
S. Dirkse
,
Paula Drumond
,
Dashkhuu Dulamsuren
,
Mithat Ekici
,
M. ElKharrim
,
Jhan-Carlo Espinoza
,
Chris Fenimore
,
Chris Fogarty
,
Steven Fuhrman
,
Karin Gleason
,
Charles “Chip” P. Guard
,
S. Hagos
,
Richard R. Heim Jr.
,
Sverker Hellström
,
J. Hicks
,
Hugo G. Hidalgo
,
Hongjie Huang
,
Gerardo Jadra
,
G. Jumaux
,
K. Kabidi
,
Amin Fazl Kazemi
,
Mike Kendon
,
Kenneth Kerr
,
Valentina Khan
,
Mai Van Khiem
,
Mi Ju Kim
,
Natalia N. Korshunova
,
A. C. Kruger
,
Mónika Lakatos
,
Hoang Phuc Lam
,
Waldo Lavado-Casimiro
,
Tsz-Cheung Lee
,
Kinson H. Y. Leung
,
Tanja Likso
,
Rui Lu
,
Jostein Mamen
,
Izolda Marcinonienė
,
Jose A. Marengo
,
Mohammadi Marjan
,
Ana E. Martínez
,
C. McBride
,
Tristan Meyers
,
Noelia Misevicius
,
Aurel Moise
,
Jorge Molina-Carpio
,
Natali Mora
,
Johnny Morán
,
Claire Morehen
,
A. E. Mostafa
,
Juan J. Nieto
,
Yoshinori Oikawa
,
Yuka Okunaka
,
Reynaldo Pascual Ramírez
,
Melita Perčec Tadić
,
Vanda Pires
,
Kenny Quisbert
,
Willy R. Quispe
,
M. Rajeevan
,
Andrea M. Ramos
,
Cristina Recalde
,
Alejandra J. Reyes Kohler
,
M. Robjhon
,
Esteban Rodriguez Guisado
,
Josyane Ronchail
,
Benjamin Rösner
,
Henrieke Rösner
,
Frans Rubek
,
Roberto Salinas
,
A. Sayouri
,
Semjon Schimanke
,
Z. T. Segele
,
Serhat Sensoy
,
Amsari Mudzakir Setiawan
,
R. Shukla
,
F. Sima
,
Adam Smith
,
Jacqueline Spence-Hemmings
,
Sandra Spillane
,
O. P. Sreejith
,
A. K. Srivastava
,
Jose L. Stella
,
Tannecia S. Stephenson
,
Kiyotoshi Takahashi
,
Kazuto Takemura
,
Michael A. Taylor
,
W. M. Thiaw
,
Skie Tobin
,
Lidia Trescilo
,
Adrian Trotman
,
Gerard van der Schrier
,
Cedric J. Van Meerbeeck
,
Ahad Vazife
,
An Willems
, and
Peiqun Zhang
Open access
Peter Bissolli
,
Catherine Ganter
,
Ademe Mekonnen
,
Ahira Sánchez-Lugo
,
Zhiwei Zhu
,
A. Abida
,
W. Agyakwah
,
Laura S. Aldeco
,
Eric J. Alfaro
,
Teddy Allen
,
Lincoln M. Alves
,
Jorge A. Amador
,
B. Andrade
,
P. Asgarzadeh
,
Grinia Avalos
,
Julian Baez
,
M. Yu. Bardin
,
E. Bekele
,
Renato Bertalanic
,
Oliver Bochníček
,
Brandon Bukunt
,
Blanca Calderón
,
Jayaka D. Campbell
,
Elise Chandler
,
Candice S Charlton
,
Vincent Y. S. Cheng
,
Leonardo A. Clarke
,
Kris Correa
,
Catalina R. Cortés Salazar
,
Felipe Costa
,
Lenka Crhová
,
Ana Paula Cunha
,
Mesut Demircan
,
K. R. Dhurmea
,
Diana A. Domínguez
,
Dashkhuu Dulamsuren
,
M. ElKharrim
,
Jhan-Carlo Espinoza
,
A. Fazl-Kezemi
,
Nava Fedaeff
,
Chris Fenimore
,
Steven Fuhrman
,
Karin Gleason
,
Charles “Chip” P. Guard
,
Samson Hagos
,
Mizuki Hanafusa
,
Richard R. Heim Jr.
,
John Kennedy
,
Sverker Hellström
,
Hugo G. Hidalgo
,
I. A. Ijampy
,
Gyo Soon Im
,
G. Jumaux
,
K. Kabidi
,
Kenneth Kerr
,
Yelena Khalatyan
,
Valentina Khan
,
Mai Van Khiem
,
Tobias Koch
,
Gerbrand Koren
,
Natalia N. Korshunova
,
A. C. Kruger
,
Mónika Lakatos
,
Jostein Mamen
,
Hoang Phuc Lam
,
Mark A. Lander
,
Waldo Lavado-Casimiro
,
Tsz-Cheung Lee
,
Kinson H. Y. Leung
,
Xuefeng Liu
,
Rui Lu
,
José A. Marengo
,
Mohammadi Marjan
,
Ana E. Martínez
,
Charlotte McBride
,
Mirek Mietus
,
Noelia Misevicius
,
Aurel Moise
,
Jorge Molina-Carpio
,
Natali Mora
,
Awatif E. Mostafa
,
O. Ndiaye
,
Juan J. Nieto
,
Kristin Olafsdottir
,
Reynaldo Pascual Ramírez
,
David Phillips
,
Amos Porat
,
Esteban Rodriguez Guisado
,
Madhavan Rajeevan
,
Andrea M. Ramos
,
Cristina Recalde Coronel
,
Alejandra J. Reyes Kohler
,
M. Robjhon
,
Josyane Ronchail
,
Roberto Salinas
,
Hirotaka Sato
,
Hitoshi Sato
,
Amal Sayouri
,
Serhat Sensoy
,
Amsari Mudzakir Setiawan
,
F. Sima
,
Adam Smith
,
Matthieu Sorel
,
Sandra Spillane
,
Jacqueline M. Spence
,
O. P. Sreejith
,
A. K. Srivastava
,
Tannecia S. Stephenson
,
Kiyotoshi Takahashi
,
Michael A. Taylor
,
Wassila M. Thiaw
,
Skie Tobin
,
Lidia Trescilo
,
Adrian R. Trotman
,
Cedric J. Van Meerbeeck
,
A. Vazifeh
,
Shunya Wakamatsu
,
M. F. Zaheer
,
F. Zeng
, and
Peiqun Zhang
Free access
Tim Boyer
,
Ellen Bartow-Gillies
,
A. Abida
,
Melanie Ades
,
Robert Adler
,
Susheel Adusumilli
,
W. Agyakwah
,
Brandon Ahmasuk
,
Laura S. Aldeco
,
Mihai Alexe
,
Eric J. Alfaro
,
Richard P. Allan
,
Adam Allgood
,
Lincoln. M. Alves
,
Jorge A. Amador
,
John Anderson
,
B. Andrade
,
Orlane Anneville
,
Yasuyuki Aono
,
Anthony Arguez
,
Carlo Arosio
,
C. Atkinson
,
John A. Augustine
,
Grinia Avalos
,
Cesar Azorin-Molina
,
Stacia A. Backensto
,
Stephan Bader
,
Julian Baez
,
Rebecca Baiman
,
Thomas J. Ballinger
,
Alison F. Banwell
,
M. Yu Bardin
,
Jonathan Barichivich
,
John E. Barnes
,
Sandra Barreira
,
Rebecca L. Beadling
,
Hylke E. Beck
,
Emily J. Becker
,
E. Bekele
,
Guillem Martín Bellido
,
Nicolas Bellouin
,
Angela Benedetti
,
Rasmus Benestad
,
Christine Berne
,
Logan. T. Berner
,
Germar H. Bernhard
,
Uma S. Bhatt
,
A. E. Bhuiyan
,
Siiri Bigalke
,
Tiago Biló
,
Peter Bissolli
,
W. Bjerke Jarle
,
Kevin Blagrave
,
Eric S. Blake
,
Stephen Blenkinsop
,
Jessica Blunden
,
Oliver Bochníček
,
Olivier Bock
,
Xavier Bodin
,
Michael Bosilovich
,
Olivier Boucher
,
Deniz Bozkurt
,
Brian Brettschneider
,
Francis G. Bringas
,
Francis Bringas
,
Dennis Buechler
,
Stefan A. Buehler
,
Brandon Bukunt
,
Blanca Calderón
,
Suzana J. Camargo
,
Jayaka Campbell
,
Diego Campos
,
Laura Carrea
,
Brendan R. Carter
,
Ivona Cetinić
,
Don P. Chambers
,
Duo Chan
,
Elise Chandler
,
Kai-Lan Chang
,
Hua Chen
,
Lin Chen
,
Lijing Cheng
,
Vincent Y. S. Cheng
,
Leah Chomiak
,
Hanne H. Christiansen
,
John R. Christy
,
Eui-Seok Chung
,
Laura M. Ciasto
,
Leonardo Clarke
,
Kyle R. Clem
,
Scott Clingan
,
Caio A.S. Coelho
,
Judah L. Cohen
,
Melanie Coldewey-Egbers
,
Steve Colwell
,
Owen R. Cooper
,
Richard C. Cornes
,
Kris Correa
,
Felipe Costa
,
Curt Covey
,
Lawrence Coy
,
Jean-François Créatux
,
Lenka Crhova
,
Theresa Crimmins
,
Meghan F. Cronin
,
Thomas Cropper
,
Molly Crotwell
,
Joshua Culpepper
,
Ana P. Cunha
,
Diego Cusicanqui
,
Rajashree T. Datta
,
Sean M. Davis
,
Veerle De Bock
,
Richard A. M. de Jeu
,
Jos De Laat
,
Bertrand Decharme
,
Doug Degenstein
,
Reynald Delaloye
,
Mesut Demircan
,
Chris Derksen
,
Ricardo Deus
,
K. R. Dhurmea
,
Howard J. Diamond
,
S. Dirkse
,
Dmitry Divine
,
Martin T. Dokulil
,
Markus G. Donat
,
Shenfu Dong
,
Wouter A. Dorigo
,
Caroline Drost Jensen
,
Matthew L. Druckenmiller
,
Paula Drumond
,
Marcel du Plessis
,
Hilary A. Dugan
,
Dashkhuu Dulamsuren
,
Devon Dunmire
,
Robert J. H. Dunn
,
Imke Durre
,
Geoff Dutton
,
Gregory Duveiller
,
Mithat Ekici
,
Alesksandra Elias Chereque
,
M. ElKharrim
,
Howard E. Epstein
,
Jhan-Carlo Espinoza
,
Thomas W. Estilow
,
Nicole Estrella
,
Nicolas Fauchereau
,
Robert S. Fausto
,
Richard A. Feely
,
Chris Fenimore
,
David Fereday
,
Xavier Fettweis
,
vitali E. Fioletov
,
Johannes Flemming
,
Chris Fogarty
,
Ryan L. Fogt
,
Bruce C. Forbes
,
Michael J. Foster
,
Bryan A. Franz
,
Natalie M. Freeman
,
Helen A. Fricker
,
Stacey M. Frith
,
Lucien Froidevaux
,
(JJ)
,
Steven Fuhrman
,
Martin Füllekrug
,
Catherine Ganter
,
Meng Gao
,
Alex S. Gardner
,
Judith Garforth
,
Jay Garg
,
Sebastian Gerland
,
Badin Gibbes
,
Sarah T. Gille
,
John Gilson
,
Karin Gleason
,
Nadine Gobron
,
Scott J. Goetz
,
Stanley B. Goldenberg
,
Gustavo Goni
,
Steven Goodman
,
Atsushi Goto
,
Jens-Uwe Grooß
,
Alexander Gruber
,
Guojun Gu
,
Charles “Chip” P. Guard
,
S. Hagos
,
Sebastian Hahn
,
Leopold Haimberger
,
Bradley D. Hall
,
Benjamin D. Hamlington
,
Edward Hanna
,
Inger Hanssen-Bauer
,
Daniel S. Harnos
,
Ian Harris
,
Qiong He
,
Richard R. Heim Jr.
,
Sverker Hellström
,
Deborah L. Hemming
,
Stefan Hendricks
,
J. Hicks
,
Hugo G. Hidalgo
,
Martin Hirschi
,
(Ben)
,
W. Hobbs
,
Robert M. Holmes
,
Robert Holzworth
,
Filip Hrbáček
,
Guojie Hu
,
Zeng-Zhen Hu
,
Boyin Huang
,
Hongjie Huang
,
Dale F. Hurst
,
Iolanda Ialongo
,
Antje Inness
,
Ketil Isaksen
,
Masayoshi Ishii
,
Gerardo Jadra
,
Svetlana Jevrejeva
,
Viju O. John
,
W. Johns
,
Bjørn Johnsen
,
Bryan Johnson
,
Gregory C. Johnson
,
Philip D. Jones
,
Timothy Jones
,
Simon A. Josey
,
G. Jumaux
,
Robert Junod
,
Andreas Kääb
,
K. Kabidi
,
Johannes W. Kaiser
,
Robb S.A. Kaler
,
Lars Kaleschke
,
Viktor Kaufmann
,
Amin Fazl Kazemi
,
Linda M. Keller
,
Andreas Kellerer-Pirklbauer
,
Mike Kendon
,
John Kennedy
,
Elizabeth C. Kent
,
Kenneth Kerr
,
Valentina Khan
,
Mai Van Khiem
,
Richard Kidd
,
Mi Ju Kim
,
Seong-Joong Kim
,
Zak Kipling
,
Philip J. Klotzbach
,
John A. Knaff
,
Akash Koppa
,
Natalia N. Korshunova
,
Benjamin M. Kraemer
,
Natalya A. Kramarova
,
A. C. Kruger
,
Andries Kruger
,
Arun Kumar
,
Michelle L’Heureux
,
Sofia La Fuente
,
Alo Laas
,
Zachary M. Labe
,
Rick Lader
,
Mónika Lakatos
,
Kaisa Lakkala
,
Hoang Phuc Lam
,
Xin Lan
,
Peter Landschützer
,
Chris W. Landsea
,
Timothy Lang
,
Matthias Lankhorst
,
Kathleen O. Lantz
,
Mark J. Lara
,
Waldo Lavado-Casimiro
,
David A. Lavers
,
Matthew A. Lazzara
,
Thierry Leblanc
,
Tsz-Cheung Lee
,
Eric M. Leibensperger
,
Chris Lennard
,
Eric Leuliette
,
Kinson H. Y. Leung
,
Jan L. Lieser
,
Tanja Likso
,
I-I. Lin
,
Jackie Lindsey
,
Yakun Liu
,
Ricardo Locarnini
,
Norman G. Loeb
,
Bryant D. Loomis
,
Andrew M. Lorrey
,
Diego Loyola
,
Rui Lu
,
Rick Lumpkin
,
Jing-Jia Luo
,
Kari Luojus
,
John M. Lyman
,
Stephen C. Maberly
,
Matthew J. Macander
,
Michael MacFerrin
,
Graeme A. MacGilchrist
,
Michelle L. MacLennan
,
Remi Madelon
,
Andrew D. Magee
,
Florence Magnin
,
Jostein Mamen
,
Ken D. Mankoff
,
Gloria L. Manney
,
Izolda Marcinonienė
,
Jose A. Marengo
,
Mohammadi Marjan
,
Ana E. Martínez
,
Robert A. Massom
,
Shin-Ichiro Matsuzaki
,
Linda May
,
Michael Mayer
,
Matthew R. Mazloff
,
Stephanie A. McAfee
,
C. McBride
,
Matthew F. McCabe
,
James W. McClelland
,
Michael J. McPhaden
,
Tim R. Mcvicar
,
Carl A. Mears
,
Walter N. Meier
,
A. Mekonnen
,
Annette Menzel
,
Christopher J. Merchant
,
Mark A. Merrifield
,
Michael F. Meyer
,
Tristan Meyers
,
David E. Mikolajczyk
,
John B. Miller
,
Diego G. Miralles
,
Noelia Misevicius
,
Alexey Mishonov
,
Gary T. Mitchum
,
Ben I. Moat
,
Leander Moesinger
,
Aurel Moise
,
Jorge Molina-Carpio
,
Ghislaine Monet
,
Stephan A. Montzka
,
Twila A. Moon
,
G. W. K. Moore
,
Natali Mora
,
Johnny Morán
,
Claire Morehen
,
Colin Morice
,
A. E. Mostafa
,
Thomas L. Mote
,
Ivan Mrekaj
,
Lawrence Mudryk
,
Jens Mühle
,
Rolf Müller
,
David Nance
,
Eric R. Nash
,
R. Steven Nerem
,
Paul A. Newman
,
Julien P. Nicolas
,
Juan J. Nieto
,
Jeannette Noetzli
,
Ben Noll
,
Taylor Norton
,
Kelsey E. Nyland
,
John O’Keefe
,
Naomi Ochwat
,
Yoshinori Oikawa
,
Yuka Okunaka
,
Timothy J. Osborn
,
James E. Overland
,
Taejin Park
,
Mark Parrington
,
Julia K. Parrish
,
Richard J. Pasch
,
Reynaldo Pascual Ramírez
,
Cécile Pellet
,
Mauri S. Pelto
,
Melita Perčec Tadić
,
Donald K. Perovich
,
Guðrún Nína Petersen
,
Kyle Petersen
,
Irina Petropavlovskikh
,
Alek Petty
,
Alexandre B. Pezza
,
Luciano P. Pezzi
,
Coda Phillips
,
Gareth K. Phoenix
,
Don Pierson
,
Izidine Pinto
,
Vanda Pires
,
Michael Pitts
,
Stephen Po-Chedley
,
Paolo Pogliotti
,
Kristin Poinar
,
Lorenzo Polvani
,
Wolfgang Preimesberger
,
Colin Price
,
Merja Pulkkanen
,
Sarah G. Purkey
,
Bo Qiu
,
Kenny Quisbert
,
Willy R. Quispe
,
M. Rajeevan
,
Andrea M. Ramos
,
William J. Randel
,
Mika Rantanen
,
Marilyn N. Raphael
,
James Reagan
,
Cristina Recalde
,
Phillip Reid
,
Samuel Rémy
,
Alejandra J. Reyes Kohler
,
Lucrezia Ricciardulli
,
Andrew D. Richardson
,
Robert Ricker
,
David A. Robinson
,
M. Robjhon
,
Willy Rocha
,
Matthew Rodell
,
Esteban Rodriguez Guisado
,
Nemesio Rodriguez-Fernandez
,
Vladimir E. Romanovsky
,
Josyane Ronchail
,
Matthew Rosencrans
,
Karen H. Rosenlof
,
Benjamin Rösner
,
Henrieke Rösner
,
Alexei Rozanov
,
Jozef Rozkošný
,
Frans Rubek
,
Olga O. Rusanovskaya
,
This Rutishauser
,
C. T. Sabeerali
,
Roberto Salinas
,
Ahira Sánchez-Lugo
,
Michelle L. Santee
,
Marcelo Santini
,
Katsunari Sato
,
Parnchai Sawaengphokhai
,
A. Sayouri
,
Theodore Scambos
,
Verena Schenzinger
,
Semjon Schimanke
,
Robert W. Schlegel
,
Claudia Schmid
,
Martin Schmid
,
Udo Schneider
,
Carl J. Schreck
,
Cristina Schultz
,
Science Systems and Applications Inc. Science Systems and Applications Inc.
,
Z. T. Segele
,
Serhat Sensoy
,
Shawn P. Serbin
,
Mark C. Serreze
,
Amsari Mudzakir Setiawan
,
Fumi Sezaki
,
Sapna Sharma
,
Jonathan D. Sharp
,
Gay Sheffield
,
Jia-Rui Shi
,
Lei Shi
,
Alexander I. Shiklomanov
,
Nikolay I. Shiklomanov
,
Svetlana V. Shimaraeva
,
R. Shukla
,
David A. Siegel
,
Eugene A. Silow
,
F. Sima
,
Adrian J. Simmons
,
David A. Smeed
,
Adam Smith
,
Sharon L. Smith
,
Brian J. Soden
,
Viktoria Sofieva
,
Everaldo Souza
,
Tim H. Sparks
,
Jacqueline Spence-Hemmings
,
Robert G. M. Spencer
,
Sandra Spillane
,
O. P. Sreejith
,
A. K. Srivastava
,
Paul W. Stackhouse Jr.
,
Sharon Stammerjohn
,
Ryan Stauffer
,
Wolfgang Steinbrecht
,
Andrea K. Steiner
,
Jose L. Stella
,
Tannecia S. Stephenson
,
Pietro Stradiotti
,
Susan E. Strahan
,
Dmitry A. Streletskiy
,
Divya E. Surendran
,
Anya Suslova
,
Tove Svendby
,
William Sweet
,
Kiyotoshi Takahashi
,
Kazuto Takemura
,
Suzanne E. Tank
,
Michael A. Taylor
,
Marco Tedesco
,
Stephen J. Thackeray
,
W. M. Thiaw
,
Emmanuel Thibert
,
Richard L. Thoman
,
Andrew F. Thompson
,
Philip R. Thompson
,
Xiangshan Tian-Kunze
,
Mary-Louise Timmermans
,
Maxim A. Timofeyev
,
Skie Tobin
,
Hans Tømmervik
,
Kleareti Tourpali
,
Lidia Trescilo
,
Mikhail Tretiakov
,
Blair C. Trewin
,
Joaquin A. Triñanes
,
Adrian Trotman
,
Ryan E. Truchelut
,
Luke D. Trusel
,
Mari R. Tye
,
Ronald van der A
,
Robin van der Schalie
,
Gerard van der Schrier
,
Cedric J. Van Meerbeeck
,
Arnold J.H. van vliet
,
Ahad Vazife
,
Piet Verburg
,
Jean-Paul Vernier
,
Isaac J. Vimont
,
Katrina Virts
,
Sebastián Vivero
,
Denis L. Volkov
,
Holger Vömel
,
Russell S. Vose
,
(Skip)
,
John E. Walsh
,
Bin Wang
,
Hui Wang
,
Muyin Wang
,
Ray H. J. Wang
,
Xinyue Wang
,
Rik Wanninkhof
,
Taran Warnock
,
Mark Weber
,
Melinda Webster
,
Adrian Wehrlé
,
Caihong Wen
,
Toby K. Westberry
,
Matthew J. Widlansky
,
David N. Wiese
,
Jeannette D. Wild
,
Jonathan D. Wille
,
An Willems
,
Kate M. Willett
,
Earle Williams
,
J. Willis
,
Takmeng Wong
,
Kimberly M. Wood
,
Richard Iestyn Woolway
,
Ping-Ping Xie
,
Dedi Yang
,
Xungang Yin
,
Ziqi Yin
,
Zhenzhong Zeng
,
Huai-min Zhang
,
Li Zhang
,
Peiqun Zhang
,
Lin Zhao
,
Xinjia Zhou
,
Zhiwei Zhu
,
Jerry R. Ziemke
,
Markus Ziese
,
Scott Zolkos
,
Ruxandra M. Zotta
,
Cheng-Zhi Zou
,
Jessicca Allen
,
Amy V. Camper
,
Bridgette O. Haley
,
Gregory Hammer
,
S. Elizabeth Love-Brotak
,
Laura Ohlmann
,
Lukas Noguchi
,
Deborah B. Riddle
, and
Sara W. Veasey

Abstract

—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES

Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.

In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.

Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.

While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.

The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.

In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.

In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.

Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.

A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.

As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.

In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.

On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.

Open access