Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: J. P. Pinto x
  • Refine by Access: All Content x
Clear All Modify Search
J. D. Mahlman, L. J. Umscheid, and J. P. Pinto

Abstract

The GFDL “SKYHI” general circulation model has been used to simulate the effect of the Antarctic “ozone hole” phenomenon on the radiative and dynamical environment of the lower stratosphere. Both the polar ozone destruction and photochemical restoration chemistries are calculated by parameterized simplifications of the still somewhat uncertain chemical processes.

The modeled total column ozone depletions are near 25% in spring over Antarctica, with 1% depletion reaching equatorial latitudes by the end of the 4½–year model experiment. In the lower stratosphere, ozone reductions of 5% reach to the equator. Large coolings of about 8 K are simulated in the lower stratosphere over Antarctica in late spring, while a general cooling of about 1–1.5 K is present throughout the Southern Hemisphere lower stratosphere. The model atmosphere experiences a long-term positive temperature-chemical feedback because significant ozone reductions carry over into the next winter.

The overall temperature response to the reduced ozone is essentially radiative in character. However, substantial dynamical changes are induced by the ozone hole effect. The Antarctic middle stratosphere in late spring warms by about 6 K over Antarctica and the lower midlatitude stratosphere warms by approximately 1 K. These warming spots are produced mainly by an increased residual circulation intensity. Also, the Antarctic vortex becomes tighter and more confined as a result of the reduced ozone. These two dynamical effects combine to steepen the meridional slope of quasi-conservative trace constituent isolines. Thus, the entire transport, radiative, and dynamical climatology of the springtime stratosphere is affected to an important degree by the ozone hole phenomenon. Over the entire year, however, these dynamical effects are considerably smaller.

Full access
Y. L. Yung, J. P. Pinto, R. T. Watson, and S. P. Sander

Abstract

The role of bromine compounds in the photochemistry of the natural and perturbed stratosphere has been reexamined using an expanded reaction scheme and the results of recent laboratory studies of several key reactions. The most important finding is that through the reaction BrO + CIO → Br + Cl + O2, there is a synergistic effect between bromine and chlorine which results in an efficient catalytic destruction of ozone in the lower stratosphere. One-dimensional photochemical model results indicate that BrO is the major bromine species throughout the stratosphere, followed by BrONO2, HBr, HOBr and Br. We show from the foregoing that bromine is more efficient than chlorine as a catalyst for destroying ozone, and discuss the implications for stratospheric ozone of possible future growth in the industrial and agricultural use of bromine. Bromine concentrations of 20 pptv (2 × 10−11), as suggested by recent observations, can decrease the present-day integrated ozone column density by 2.4%, and can enhance ozone depletion from steady-state chlorofluoromethane release at 1973 rates by a factor of 1.1–1.2.

Full access
Simon Caine, Todd P. Lane, Peter T. May, Christian Jakob, Steven T. Siems, Michael J. Manton, and James Pinto

Abstract

This study presents a method for comparing convection-permitting model simulations to radar observations using an innovative object-based approach. The method uses the automated cell-tracking algorithm, Thunderstorm Identification Tracking Analysis and Nowcasting (TITAN), to identify individual convective cells and determine their properties. Cell properties are identified in the same way for model and radar data, facilitating comparison of their statistical distributions. The method is applied to simulations of tropical convection during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) using the Weather Research and Forecasting Model, and compared to data from a ground-based radar. Simulations with different microphysics and model resolution are also conducted. Among other things, the comparisons between the model and the radar elucidate model errors in the depth and size of convective cells. On average, simulated convective cells reached higher altitudes than the observations. Also, when using a low reflectivity (25 dBZ) threshold to define convective cells, the model underestimates the size of the largest cells in the observed population. Some of these differences are alleviated with a change of microphysics scheme and higher model resolution, demonstrating the utility of this method for assessing model changes.

Full access
G. de Boer, C. Diehl, J. Jacob, A. Houston, S. W. Smith, P. Chilson, D. G. Schmale III, J. Intrieri, J. Pinto, J. Elston, D. Brus, O. Kemppinen, A. Clark, D. Lawrence, S. C. C. Bailey, M.P. Sama, A. Frazier, C. Crick, V. Natalie, E. Pillar-Little, P. Klein, S. Waugh, J. K. Lundquist, L. Barbieri, S. T. Kral, A. A. Jensen, C. Dixon, S. Borenstein, D. Hesselius, K. Human, P. Hall, B. Argrow, T. Thornberry, R. Wright, and J. T. Kelly
Full access
J. A. Curry, P. V. Hobbs, M. D. King, D. A. Randall, P. Minnis, G. A. Isaac, J. O. Pinto, T. Uttal, A. Bucholtz, D. G. Cripe, H. Gerber, C. W. Fairall, T. J. Garrett, J. Hudson, J. M. Intrieri, C. Jakob, T. Jensen, P. Lawson, D. Marcotte, L. Nguyen, P. Pilewskie, A. Rangno, D. C. Rogers, K. B. Strawbridge, F. P. J. Valero, A. G. Williams, and D. Wylie

An overview is given of the First ISCCP Regional Experiment Arctic Clouds Experiment that was conducted during April–July 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud–radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and at Barrow, Alaska. This paper describes the programmatic and scientific objectives of the project, the experimental design (including research platforms and instrumentation), the conditions that were encountered during the field experiment, and some highlights of preliminary observations, modeling, and satellite remote sensing studies.

Full access