Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: J. R. Janowicz x
  • Refine by Access: All Content x
Clear All Modify Search

Energy and Water Cycles in a High-Latitude, North-Flowing River System

Summary of Results from the Mackenzie GEWEX Study—Phase I

W. R. Rouse, E. M. Blyth, R. W. Crawford, J. R. Gyakum, J. R. Janowicz, B. Kochtubajda, H. G. Leighton, P. Marsh, L. Martz, A. Pietroniro, H. Ritchie, W. M. Schertzer, E. D. Soulis, R. E. Stewart, G. S. Strong, and M. K. Woo

The MacKenzie Global Energy and Water Cycle Experiment (GEWEX) Study, Phase 1, seeks to improve understanding of energy and water cycling in the Mackenzie River basin (MRB) and to initiate and test atmospheric, hydrologic, and coupled models that will project the sensitivity of these cycles to climate change and to human activities. Major findings from the study are outlined in this paper. Absorbed solar radiation is a primary driving force of energy and water, and shows dramatic temporal and spatial variability. Cloud amounts feature large diurnal, seasonal, and interannual fluctuations. Seasonality in moisture inputs and outputs is pronounced. Winter in the northern MRB features deep thermal inversions. Snow hydrological processes are very significant in this high-latitude environment and are being successfully modeled for various landscapes. Runoff processes are distinctive in the major terrain units, which is important to overall water cycling. Lakes and wetlands compose much of MRB and are prominent as hydrologic storage systems that must be incorporated into models. Additionally, they are very efficient and variable evaporating systems that are highly sensitive to climate variability. Mountainous high-latitude sub-basins comprise a mosaic of land surfaces with distinct hydrological attributes that act as variable source areas for runoff generation. They also promote leeward cyclonic storm generation. The hard rock terrain of the Canadian Shield exhibits a distinctive energy flux regimen and hydrologic regime. The MRB has been warming dramatically recently, and ice breakup and spring outflow into the Polar Sea has been occurring progressively earlier. This paper presents initial results from coupled atmospheric-hydrologic modeling and delineates distinctive cold region inputs needed for developments in regional and global climate modeling.

Full access