Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: J. Redemann x
  • All content x
Clear All Modify Search
J. M. Livingston, B. Schmid, P. B. Russell, J. R. Podolske, J. Redemann, and G. S. Diskin

Abstract

In January–February 2003, the 14-channel NASA Ames airborne tracking sun photometer (AATS) and the NASA Langley/Ames diode laser hygrometer (DLH) were flown on the NASA DC-8 aircraft. The AATS measured column water vapor on the aircraft-to-sun path, while the DLH measured local water vapor in the free stream between the aircraft fuselage and an outboard engine cowling. The AATS and DLH measurements have been compared for two DC-8 vertical profiles by differentiating the AATS column measurement and/or integrating the DLH local measurement over the altitude range of each profile (7.7–10 km and 1.1–12.5 km). These comparisons extend, for the first time, tests of AATS water vapor retrievals to altitudes >∼6 km and column contents <0.1 g cm−2. To the authors’ knowledge, this is the first time suborbital spectroscopic water vapor measurements using the 940-nm band have been tested in conditions so high and dry. Values of layer water vapor (LWV) calculated from the AATS and DLH measurements are highly correlated for each profile. The composite dataset yields r2 0.998, rms difference 7.7%, and bias (AATS minus DLH) 1.0%. For water vapor densities AATS and DLH had r2 0.968, rms difference 27.6%, and bias (AATS minus DLH) −4.2%. These results for water vapor density compare favorably with previous comparisons of AATS water vapor to in situ results for altitudes <∼6 km, columns ∼0.1 to 5 g cm−2, and densities ∼0.1 to 17 g m−3.

Full access
R. C. Levy, L. A. Remer, J. V. Martins, Y. J. Kaufman, A. Plana-Fattori, J. Redemann, and B. Wenny

Abstract

The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) experiment took place from 10 July to 2 August 2001 in a combined ocean–land region that included the Chesapeake Lighthouse [Clouds and the Earth’s Radiant Energy System (CERES) Ocean Validation Experiment (COVE)] and the Wallops Flight Facility (WFF), both along coastal Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the Moderate Resolution Imaging Spectroradiometer (MODIS). Over the ocean, MODIS retrieved aerosol optical depths (AODs) at seven wavelengths and an estimate of the aerosol size distribution. Over the land, MODIS retrieved AOD at three wavelengths plus qualitative estimates of the aerosol size. Temporally coincident measurements of aerosol properties were made with a variety of sun photometers from ground sites and airborne sites just above the surface. The set of sun photometers provided unprecedented spectral coverage from visible (VIS) to the solar near-infrared (NIR) and infrared (IR) wavelengths. In this study, AOD and aerosol size retrieved from MODIS is compared with similar measurements from the sun photometers. Over the nearby ocean, the MODIS AOD in the VIS and NIR correlated well with sun-photometer measurements, nearly fitting a one-to-one line on a scatterplot. As one moves from ocean to land, there is a pronounced discontinuity of the MODIS AOD, where MODIS compares poorly to the sun-photometer measurements. Especially in the blue wavelength, MODIS AOD is too high in clean aerosol conditions and too low under larger aerosol loadings. Using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative code to perform atmospheric correction, the authors find inconsistency in the surface albedo assumptions used by the MODIS lookup tables. It is demonstrated how the high bias at low aerosol loadings can be corrected. By using updated urban/industrial aerosol climatology for the MODIS lookup table over land, it is shown that the low bias for larger aerosol loadings can also be corrected. Understanding and improving MODIS retrievals over the East Coast may point to strategies for correction in other locations, thus improving the global quality of MODIS. Improvements in regional aerosol detection could also lead to the use of MODIS for monitoring air pollution.

Full access
J. Redemann, B. Schmid, J. A. Eilers, R. Kahn, R. C. Levy, P. B. Russell, J. M. Livingston, P. V. Hobbs, W. L. Smith Jr., and B. N. Holben

Abstract

As part of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment, 10 July–2 August 2001, off the central East Coast of the United States, the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the University of Washington’s Convair 580 (CV-580) research aircraft during 10 flights (∼45 flight hours). One of the main research goals in CLAMS was the validation of satellite-based retrievals of aerosol properties. The goal of this study in particular was to perform true over-ocean validations (rather than over-ocean validation with ground-based, coastal sites) at finer spatial scales and extending to longer wavelengths than those considered in previous studies. Comparisons of aerosol optical depth (AOD) between the Aerosol Robotic Network (AERONET) Cimel instrument at the Chesapeake Lighthouse and airborne measurements by AATS-14 in its vicinity showed good agreement with the largest r-square correlation coefficients at wavelengths of 0.38 and 0.5 μm (>0.99). Coordinated low-level flight tracks of the CV-580 during Terra overpass times permitted validation of over-ocean Moderate Resolution Imaging Spectroradiometer (MODIS) level 2 (MOD04_L2) multiwavelength AOD data (10 km × 10 km, nadir) in 16 cases on three separate days. While the correlation between AATS-14- and MODIS-derived AOD was weak with an r square of 0.55, almost 75% of all MODIS AOD measurements fell within the prelaunch estimated uncertainty range Δτ = ±0.03 ± 0.05τ. This weak correlation may be due to the small AODs (generally less than 0.1 at 0.5 μm) encountered in these comparison cases. An analogous coordination exercise resulted in seven coincident over-ocean matchups between AATS-14 and Multiangle Imaging Spectroradiometer (MISR) measurements. The comparison between AATS-14 and the MISR standard algorithm regional mean AODs showed a stronger correlation with an r square of 0.94. However, MISR AODs were systematically larger than the corresponding AATS values, with an rms difference of ∼0.06. AATS data collected during nine extended low-level CV-580 flight tracks were used to assess the spatial variability in AOD at horizontal scales up to 100 km. At UV and midvisible wavelengths, the largest absolute gradients in AOD were 0.1–0.2 per 50-km horizontal distance. In the near-IR, analogous gradients rarely reached 0.05. On any given day, the relative gradients in AOD were remarkably similar for all wavelengths, with maximum values of 70% (50 km)−1 and more typical values of 25% (50 km)−1. The implications of these unique measurements of AOD spatial variability for common validation practices of satellite data products and for comparisons to large-scale aerosol models are discussed.

Full access
W. L. Smith Jr., T. P. Charlock, R. Kahn, J. V. Martins, L. A. Remer, P. V. Hobbs, J. Redemann, and C. K. Rutledge

Abstract

NASA developed an Earth Observing System (EOS) to study global change and reduce uncertainties associated with aerosols and other key parameters controlling climate. The first EOS satellite, Terra, was launched in December 1999. The Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) field campaign was conducted from 10 July to 2 August 2001 to validate several Terra data products, including aerosol properties and radiative flux profiles derived from three complementary Terra instruments: the Clouds and the Earth’s Radiant Energy System (CERES), the Multiangle Imaging Spectroradiometer (MISR), and the Moderate Resolution Imaging Spectroradiometer (MODIS). CERES, MISR, and MODIS are being used to investigate the critical role aerosols play in modulating the radiative heat budget of the earth–atmosphere system. CLAMS’ primary objectives are to improve understanding of atmospheric aerosols, to validate and improve the satellite data products, and to test new instruments and measurement concepts. A variety of in situ sampling devices and passive remote sensing instruments were flown on six aircraft to characterize the state of the atmosphere, the composition of atmospheric aerosols, and the associated surface and atmospheric radiation parameters over the U.S. eastern seaboard. Aerosol particulate matter was measured at two ground stations established at Wallops Island, Virginia, and the Chesapeake Lighthouse, the site of an ongoing CERES Ocean Validation Experiment (COVE) where well-calibrated radiative fluxes and Aerosol Robotic Network (AERONET) aerosol properties have been measured since 1999. Nine coordinated aircraft missions and numerous additional sorties were flown under a variety of atmospheric conditions and aerosol loadings. On one “golden day” (17 July 2001), under moderately polluted conditions with midvisible optical depths near 0.5, all six aircraft flew coordinated patterns vertically stacked between 100 and 65 000 ft over the COVE site as Terra flew overhead. This overview presents a description of CLAMS objectives, measurements, and sampling strategies. Key results, reported in greater detail in the collection of papers found in this special issue, are also summarized.

Full access
P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carrico, M. J. Rood, E. Öström, K. J. Noone, W. von Hoyningen-Huene, and L. Remer

Abstract

Aerosol single scattering albedo ω (the ratio of scattering to extinction) is important in determining aerosol climatic effects, in explaining relationships between calculated and measured radiative fluxes, and in retrieving aerosol optical depths from satellite radiances. Recently, two experiments in the North Atlantic region, the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2), determined aerosol ω by a variety of techniques. The techniques included fitting of calculated to measured radiative fluxes; retrievals of ω from skylight radiances; best fits of complex refractive index to profiles of backscatter, extinction, and size distribution; and in situ measurements of scattering and absorption at the surface and aloft. Both TARFOX and ACE-2 found a fairly wide range of values for ω at midvisible wavelengths (∼550 nm), with 0.85 ≤ ω midvis ≤ 0.99 for the marine aerosol impacted by continental pollution. Frequency distributions of ω could usually be approximated by lognormals in ω maxω, with some occurrence of bimodality, suggesting the influence of different aerosol sources or processing. In both TARFOX and ACE-2, closure tests between measured and calculated radiative fluxes yielded best-fit values of ω midvis of 0.90 ± 0.04 for the polluted boundary layer. Although these results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., thermal offsets, unknown gas absorption). The other techniques gave larger values for ω midvis for the polluted boundary layer, with a typical result of ω midvis = 0.95 ± 0.04. Current uncertainties in ω are large in terms of climate effects. More tests are needed of the consistency among different methods and of humidification effects on ω.

Full access
William L. Smith Jr., Christy Hansen, Anthony Bucholtz, Bruce E. Anderson, Matthew Beckley, Joseph G. Corbett, Richard I. Cullather, Keith M. Hines, Michelle Hofton, Seiji Kato, Dan Lubin, Richard H. Moore, Michal Segal Rosenhaimer, Jens Redemann, Sebastian Schmidt, Ryan Scott, Shi Song, John D. Barrick, J. Bryan Blair, David H. Bromwich, Colleen Brooks, Gao Chen, Helen Cornejo, Chelsea A. Corr, Seung-Hee Ham, A. Scott Kittelman, Scott Knappmiller, Samuel LeBlanc, Norman G. Loeb, Colin Miller, Louis Nguyen, Rabindra Palikonda, David Rabine, Elizabeth A. Reid, Jacqueline A. Richter-Menge, Peter Pilewskie, Yohei Shinozuka, Douglas Spangenberg, Paul Stackhouse, Patrick Taylor, K. Lee Thornhill, David van Gilst, and Edward Winstead

Abstract

The National Aeronautics and Space Administration (NASA)’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most critical and unique aspect of ARISE mission planning was to coordinate the flight tracks with NASA Cloud and the Earth’s Radiant Energy System (CERES) satellite sensor observations in such a way that satellite sensor angular dependence models and derived top-of-atmosphere fluxes could be validated against the aircraft data over large gridbox domains of order 100–200 km. This was accomplished over open ocean, over the marginal ice zone (MIZ), and over a region of heavy sea ice concentration, in cloudy and clear skies. ARISE data will be valuable to the community for providing better interpretation of satellite energy budget measurements in the Arctic and for process studies involving ice–cloud–atmosphere energy exchange during the sea ice transition period.

Full access