Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: J. T. Farrar x
  • All content x
Clear All Modify Search
G. Spiro Jaeger, J. A. MacKinnon, A. J. Lucas, E. Shroyer, J. Nash, A. Tandon, J. T. Farrar, and A. Mahadevan


The scale-dependent variance of tracer properties in the ocean bears the imprint of the oceanic eddy field. Anomalies in spice (which combines anomalies in temperature T and salinity S on isopycnal surfaces) act as passive tracers beneath the surface mixed layer (ML). We present an analysis of spice distributions along isopycnals in the upper 200 m of the ocean, calculated with over 9000 vertical profiles of T and S measured along ~4800 km of ship tracks in the Bay of Bengal. The data are from three separate research cruises—in the winter monsoon season of 2013 and in the late and early summer monsoon seasons of 2015 and 2018. We present a spectral analysis of horizontal tracer variance statistics on scales ranging from the submesoscale (~1 km) to the mesoscale (~100 km). Isopycnal layers that are closer to the ML-base exhibit redder spectra of tracer variance at scales 10 km than is predicted by theories of quasigeostrophic turbulence or frontogenesis. Two plausible explanations are postulated. The first is that stirring by submesoscale motions and shear dispersion by near-inertial waves enhance effective horizontal mixing and deplete tracer variance at horizontal scales 10 km in this region. The second is that the spice anomalies are coherent with dynamical properties such as potential vorticity, and not interpretable as passively stirred.

Restricted access
R. D. Sharman, L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar


The statistical properties of turbulence at upper levels in the atmosphere [upper troposphere and lower stratosphere (UTLS)] are still not well known, partly because of the lack of adequate routine observations. This is despite the obvious benefit that such observations would have for alerting aircraft of potentially hazardous conditions, either in real time or for route planning. To address this deficiency, a research project sponsored by the Federal Aviation Administration has developed a software package that automatically estimates and reports atmospheric turbulence intensity levels (as EDR ≡ ε 1/3, where ε is the energy or eddy dissipation rate). The package has been tested and evaluated on commercial aircraft. The amount of turbulence data gathered from these in situ reports is unprecedented. As of January 2014, there are ~200 aircraft outfitted with this system, contributing to over 137 million archived records of EDR values through 2013, most of which were taken at cruise levels of commercial aircraft, that is, in the UTLS. In this paper, techniques used for estimating EDR are outlined and comparisons with pilot reports from the same or nearby aircraft are presented. These reports allow calibration of EDR in terms of traditionally reported intensity categories (“light,” “moderate,” or “severe”). The results of some statistical analyses of EDR values are also presented. These analyses are restricted to the United States for now, but, as this program is expanded to international carriers, such data will begin to become available over other areas of the globe.

Full access
R. A. Weller, J. T. Farrar, Hyodae Seo, Channing Prend, Debasis Sengupta, J. Sree Lekha, M. Ravichandran, and R. Venkatesen


Time series of surface meteorology and air–sea fluxes from the northern Bay of Bengal are analyzed, quantifying annual and seasonal means, variability, and the potential for surface fluxes to contribute significantly to variability in surface temperature and salinity. Strong signals were associated with solar insolation and its modulation by cloud cover, and, in the 5- to 50-day range, with intraseasonal oscillations (ISOs). The northeast (NE) monsoon (DJF) was typically cloud free, with strong latent heat loss and several moderate wind events, and had the only seasonal mean ocean heat loss. The spring intermonsoon (MAM) was cloud free and had light winds and the strongest ocean heating. Strong ISOs and Tropical Cyclone Komen were seen in the southwest (SW) monsoon (JJA), when 65% of the 2.2-m total rain fell, and oceanic mean heating was small. The fall intermonsoon (SON) initially had moderate convective systems and mean ocean heating, with a transition to drier winds and mean ocean heat loss in the last month. Observed surface freshwater flux applied to a layer of the observed thickness produced drops in salinity with timing and magnitude similar to the initial drops in salinity in the summer monsoon, but did not reproduce the salinity variability of the fall intermonsoon. Observed surface heat flux has the potential to cause the temperature trends of the different seasons, but uncertainty in how shortwave radiation is absorbed in the upper ocean limits quantifying the role of surface forcing in the evolution of mixed layer temperature.

Open access
C. R. Mechoso, R. Wood, R. Weller, C. S. Bretherton, A. D. Clarke, H. Coe, C. Fairall, J. T. Farrar, G. Feingold, R. Garreaud, C. Grados, J. McWilliams, S. P. de Szoeke, S. E. Yuter, and P. Zuidema

The present paper describes the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study (VOCALS), an international research program focused on the improved understanding and modeling of the southeastern Pacific (SEP) climate system on diurnal to interannual time scales. In the framework of the SEP climate, VOCALS has two fundamental objectives: 1) improved simulations by coupled atmosphere–ocean general circulation models (CGCMs), with an emphasis on reducing systematic errors in the region; and 2) improved estimates of the indirect effects of aerosols on low clouds and climate, with an emphasis on the more precise quantification of those effects. VOCALS major scientific activities are outlined, and selected achievements are highlighted. Activities described include monitoring in the region, a large international field campaign (the VOCALS Regional Experiment), and two model assessments. The program has already produced significant advances in the understanding of major issues in the SEP: the coastal circulation and the diurnal cycle, the ocean heat budget, factors controlling precipitation and formation of pockets of open cells in stratocumulus decks, aerosol impacts on clouds, and estimation of the first aerosol indirect effect. The paper concludes with a brief presentation on VOCALS contributions to community capacity building before a summary of scientific findings and remaining questions.

Full access