Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: J. W. Hopkins x
  • Refine by Access: All Content x
Clear All Modify Search
J. W. Hopkins and P. Robillard

Abstract

A two-state Markov chain model provided very serviceable approximations to the April-September frequency statistics for duration of dry spells recorded in 45 years' observations at Edmonton, Swift Current and Winnipeg. It was less satisfactory in respect of the total number of rainy days per month, tending to underestimate the frequency of months with few rainy days. There was a minor degree of correlation in the numbres of rainy days recorded during the same month at these three locations, but no significant statistical association in those for successive months at the same location.

Full access
James A. Brey, Elizabeth W. Mills, Ira W. Geer, Robert S. Weinbeck, Kira A. Nugnes, Katie L. O’Neill, Bernard A. Blair, David R. Smith, and Edward J. Hopkins
Full access
S. I. Bohnenstengel, S. E. Belcher, A. Aiken, J. D. Allan, G. Allen, A. Bacak, T. J. Bannan, J. F. Barlow, D. C. S. Beddows, W. J. Bloss, A. M. Booth, C. Chemel, O. Coceal, C. F. Di Marco, M. K. Dubey, K. H. Faloon, Z. L. Fleming, M. Furger, J. K. Gietl, R. R. Graves, D. C. Green, C. S. B. Grimmond, C. H. Halios, J. F. Hamilton, R. M. Harrison, M. R. Heal, D. E. Heard, C. Helfter, S. C. Herndon, R. E. Holmes, J. R. Hopkins, A. M. Jones, F. J. Kelly, S. Kotthaus, B. Langford, J. D. Lee, R. J. Leigh, A. C. Lewis, R. T. Lidster, F. D. Lopez-Hilfiker, J. B. McQuaid, C. Mohr, P. S. Monks, E. Nemitz, N. L. Ng, C. J. Percival, A. S. H. Prévôt, H. M. A. Ricketts, R. Sokhi, D. Stone, J. A. Thornton, A. H. Tremper, A. C. Valach, S. Visser, L. K. Whalley, L. R. Williams, L. Xu, D. E. Young, and P. Zotter

Abstract

Air quality and heat are strong health drivers, and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants, such as ozone, nitrogen dioxide, and fine and coarse particulate matter, in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the Clean Air for London (ClearfLo; www.clearflo.ac.uk) project’s interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures.

Within ClearfLo, a large multi-institutional project funded by the U.K. Natural Environment Research Council (NERC), integrated measurements of meteorology and gaseous, and particulate composition/loading within the atmosphere of London, United Kingdom, were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and elevated), and at urban background, curbside, and rural locations were complemented with high-resolution numerical atmospheric simulations. Combining these (measurement–modeling) enhances understanding of seasonal variations in meteorology and composition together with the controlling processes. Two intensive observation periods (winter 2012 and the Summer Olympics of 2012) focus upon the vertical structure and evolution of the urban boundary layer; chemical controls on nitrogen dioxide and ozone production—in particular, the role of volatile organic compounds; and processes controlling the evolution, size, distribution, and composition of particulate matter. The paper shows that mixing heights are deeper over London than in the rural surroundings and that the seasonality of the urban boundary layer evolution controls when concentrations peak. The composition also reflects the seasonality of sources such as domestic burning and biogenic emissions.

Full access