Search Results

You are looking at 1 - 10 of 372 items for

  • Author or Editor: J. Wang x
  • Refine by Access: All Content x
Clear All Modify Search
J. H. LaCasce
and
J. Wang

Abstract

A previously published method by Wang et al. for predicting subsurface velocities and density from sea surface buoyancy and surface height is extended by incorporating analytical solutions to make the vertical projection. One solution employs exponential stratification and the second has a weakly stratified surface layer, approximating a mixed layer. The results are evaluated using fields from a numerical simulation of the North Atlantic. The simple exponential solution yields realistic subsurface density and vorticity fields to nearly 1000 m in depth. Including a mixed layer improves the response in the mixed layer itself and at high latitudes where the mixed layer is deeper. It is in the mixed layer that the surface quasigeostrophic approximation is most applicable. Below that the first baroclinic mode dominates, and that mode is well approximated by the analytical solution with exponential stratification.

Full access
J. D. Wang

Abstract

No abstract available.

Full access
J. Y. Wang

Abstract

Information on atmospheric constituents is contained in the remotely measured spectral radiances. Two iteration methods, linear and nonlinear, are presented to demonstrate the possibility of inferring the water vapor profile from ground-based measurements. The linear inversion method which linearizes the radiative transfer equation is found to have a narrow range of convergence. A study of the vertical resolution of the inferred profile through the linear inversion technique indicates that fine-scale detailed structure of the profile cannot be reconstructed. The nonlinear iteration procedure, which minimizes the root-mean-squares residual of the random noise along the direction of “steepest” descent, is found capable of inferring a reasonably stable solution with wide range of convergence and is proven in numerical stability superior to the linear technique. The effects of the errors both in radiance measurements and in temperature profile on the inferred profile are also presented.

Full access
J. Y. Wang
and
S. C. Wang

Abstract

Full access
Yuqing Wang
and
Greg J. Holland

Abstract

The motion and the evolution of tropical cyclone-like vortices in an environmental flow with vertical shear are investigated using a baroclinic primitive equation model. The study focuses on the fundamental dynamics of a baroclinic vortex in vertical shear, the influence of vortex structure, and the role of diabatic heating. The results show that the initial response of the vortex to the vertical shear is to tilt downshear. As soon as the tilt develops, the upper-level anticyclonic and lower-level cyclonic circulations begin to interact with each other. As a result of these interactions, the tilted axis of the vortex reaches a stable state after an initial adjustment, which varies with the structure of the vortex, its environmental flow shear, and the cumulus convective heating.

The motion of an adiabatic vortex in vertical shear is controlled by both the steering of the environmental flow and vertical coupling mechanisms. Most of the vortices move with the environmental flow at about 650 hPa or with the layer mean between 350 and 900 hPa, but the stronger tropical cyclone vortices move with a relatively deeper layer mean flow. In addition to advection by the environmental flow, most vortices propagate to the left of the vertical shear due to downward penetration of the circulation associated with the upper-level anticyclonic potential vorticity (PV) anomalies that are displaced downshear.

Diabatic and moist processes can substantially modify the adiabatic vortex motion by both the vertical transport of potential vorticity associated with diabatic heating and the development of convective asymmetries within the vortex core region. Diabatic heating can either substantially enhance the leftward motion tendency or result in a rightward motion relative to the vertical shear, depending on the vertical structure and intensity of the vortex and its environment. This occurs by transport of anticyclonic PV to the upper troposphere and cyclonic PV to the right of the vortex center relative to the vertical shear in the lower troposphere. A rightward motion tendency to the boundary layer flow is found to arise from enhanced heat fluxes from the ocean on the higher wind side of the vortex center. Cumulus convection is substantially enhanced on the downshear side of the vortex center due to the interaction between the vortex circulation and the vertical shear in the environmental flow. The asymmetric divergent flow associated with these convective asymmetries affects the vortex motion by deflecting the vortex to the region with maximum convection.

Full access
Xu Wang
and
Guang J. Zhang

Abstract

Low-frequency intraseasonal oscillations in the tropical atmosphere in general circulation models (GCMs) were studied extensively in many previous studies. However, the simulation of the quasi-biweekly oscillation (QBWO), which is an important component of the intraseasonal oscillations, in GCMs has not received much attention. This paper evaluates the QBWO features over the South China Sea in early [May–June (MJ)] and late [August–September (AS)] summer in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5.3 (CAM5), using observations and reanalysis data. Results show that the major features of the spatial distribution of the QBWO in both MJ and AS are simulated reasonably well by the model, although the amplitude of the variation is overestimated. CAM5 captures the local oscillation in MJ and the westward propagation in AS of the QBWO. Although there are important biases in geographical location and intensity in MJ, the model represents the QBWO horizontal and vertical structure qualitatively well in AS. The diagnosis of the eddy vorticity budget is conducted to better understand the QBWO activities in the model. Both horizontal advection of relative vorticity and that of planetary vorticity (Coriolis parameter) are important for the local evolution of the QBWO in MJ in observations as well as model simulation, whereas advection of planetary vorticity contributes to the westward propagation of QBWO vorticity anomalies in AS. Since the Coriolis parameter f only changes with latitude, this suggests that the correct simulation of anomalous meridional wind is a key factor in the realistic simulation of the QBWO in the model.

Full access
Mingcheng Wang
and
Guang J. Zhang

Abstract

Using 4 years of CloudSat data, the simulation of tropical convective cloud-top heights (CCTH) above 6 km simulated by the convection scheme in the Community Atmosphere Model, version 5 (CAM5), is evaluated. Compared to CloudSat observations, CAM5 underestimates CCTH by more than 2 km on average. Further analysis of model results suggests that the dilute CAPE calculation, which has been incorporated into the convective parameterization since CAM4, is a main factor restricting CCTH to much lower levels. After removing this restriction, more convective clouds develop into higher altitudes, although convective clouds with tops above 12 km are still underestimated significantly. The environmental conditions under which convection develops in CAM5 are compared with CloudSat observations for convection with similar CCTHs. It is shown that the model atmosphere is much more unstable compared to CloudSat observations, and there is too much entrainment in CAM5. Since CCTHs are closely associated with cloud radiative forcing, the impacts of CCTH on model simulation are further investigated. Results show that the change of CCTH has important impacts on cloud radiative forcing and precipitation. With increased CCTHs, there is more cloud radiative forcing in tropical Africa and the eastern Pacific, but less cloud radiative forcing in the western Pacific. The contribution to total convective precipitation from convection with cloud tops above 9 km is also increased substantially.

Full access
Lei Wang
and
Paul J. Kushner

Abstract

Stationary wave nonlinearity describes the self-interaction of stationary waves and is important in maintaining the zonally asymmetric atmospheric general circulation. However, the dynamics of stationary wave nonlinearity, which is often calculated explicitly in stationary wave models, is not well understood. Stationary wave nonlinearity is examined here in the simplified setting of the response to localized topographic forcing in quasigeostrophic barotropic dynamics in the presence and absence of transient eddies. It is shown that stationary wave nonlinearity accounts for most of the difference between the linear and full nonlinear response, particularly if the adjustment of the zonal-mean flow to the stationary waves is taken into account. The separate impact of transient eddy forcing is also quantified. Wave activity analysis shows that stationary wave nonlinearity in this setting is associated with Rossby wave critical layer reflection. A nonlinear stationary wave model, similar to those used in baroclinic stationary wave model studies, is also tested and is shown to capture the basic features of the full nonlinear stationary wave solution.

Full access
Weimin Wang
and
Michael J. McPhaden

Abstract

The surface-layer heat balance on interannual timescales in the equatorial Pacific has been examined in order to determine the processes responsible for sea surface temperature (SST) variability associated with warm and cold phases of the ENSO cycle (El Niño and La Niña). Principal datasets include multiyear time series of surface winds, upper-ocean temperature, and velocity obtained from the Tropical Atmosphere Ocean buoy array at four locations along the equator in the western (165°E), central (170°W), and eastern (140°W and 110°W) Pacific. A blended satellite/in situ SST product and surface heat fluxes based on the Comprehensive Ocean–Atmosphere Data Set are also used. Changes in heat storage, horizontal heat advection, and heat fluxes at the surface are estimated directly from data; vertical fluxes of heat out of the base of the mixed layer are calculated as a residual.

Results indicate that all terms in the heat balance contribute to SST change on interannual timescales, depending on location and time period. Zonal advection is important everywhere, although relative to other processes, it is most significant in the central Pacific. The inferred vertical heat flux out of the base of the mixed layer is likewise important everywhere, especially so in the eastern equatorial Pacific where the mean thermocline is shallow. Meridional advection (primarily due to instability waves in this analysis) is a negative feedback term on SST change in the eastern equatorial Pacific, tending to counteract the development of warm and cold anomalies. Likewise, the net surface heat flux generally represents a negative feedback, tending to damp SST anomalies created by ocean dynamical processes. The implications of these results for ENSO modeling and theory are discussed.

Full access
Liping Wang
and
Chester J. Koblinsky

Abstract

Using sea surface height data collected by Geosat and Topex/Poseidon, the seasonal (annual) gyre circulations in the regions of the Gulf Stream and the Kuroshio Extension were studied. The seasonal gyre circulation is roughly confined to the regions where the annual mean subtropical recirculations exist. Associated with this seasonal gyre circulation, the surface transports of the Kuroshio and the Gulf Stream are found to be maximum in the late fall and minimum in the late spring. Using historical data, the authors demonstrated that these seasonal gyre circulations are mostly confined to the mixed layer. A simple diagnostic calculation of the buoyancy balance associated with the seasonal gyre circulations shows that they are driven primarily by local buoyancy flux (heating and cooling), while contribution from advection by large-scale ocean circulation is negligible. Even though the seasonal gyre circulation is primarily driven by local buoyancy forcing, it is in the opposite sense to that originally proposed by Worthington for the annual mean subtropical recirculation. The buoyancy balance within the study region suggests that dynamics associated with the mean recirculation and the seasonal gyre are fundamentally different.

Full access