Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: J. Y. Liu x
  • All content x
Clear All Modify Search
J. Y. Liu and H. D. Orville

Abstract

The effects of precipitation on a model of cumulus cloud initiation and development over mountains are studied by numerically integrating the equations of motion, equations of conservation of water substance, and the thermodynamic energy equation. The model is two-space dimensional with a vertical wind shear in a stable, incompressible atmosphere. Heating and evaporation at the valley and mountain interact with the initial ambient flow to initiate clouds which produce shadows on the surface and cut down both heating and evaporation. The model is restricted vertically to 3.5 km and horizontally to 7.0 km.

Several precipitation parameters are studied in this model. One, the critical water content determines when cloud water converts to rainwater. A second, the autoconversion rate, determines how rapidly the cloud water converts to rainwater. The third parameter determines how quickly the precipitation evaporates beneath the cloud. The rainwater first forms by autoconversion and is then increased by the accretion process following techniques described by Kessler and Srivastava. Berry's formulation for autoconversion is also tested.

The development of the cumulus clouds is similar for both precipitating and nonprecipitating clouds at their early stages. Virga phenomena are illustrated in these small cumulus clouds. At later stages the evaporation beneath and to the sides of the cloud makes the air cooler and creates a downdraft. Generally such effects shorten the clouds' life cycle. The shadow effects cause the clouds to move out of the model grid at a progressively faster rate and cause the clouds subsequent to the first one to be smaller.

In a symmetric model integrated both with and without precipitation and with cloud shadow effects, the shadow causes multiple growths over the ridge, the third of three clouds being the only one to accelerate until impeded by the rigid upper boundary of the grid. The first two clouds dissipate shortly after formation. The downdrafts beneath the clouds are stronger in the precipitating case.

Full access
Y. Liu and J. C. H. Chiang

Abstract

Previous modeling and paleoclimate studies have suggested that cooling originating from the extratropical North Atlantic can abruptly weaken the Eurasian and North African monsoons. The climatic signature includes a widespread cooling over the Eurasian and North African continents and an associated increase to surface pressure. It is explored whether such coordinated changes are similarly exhibited in the observed twentieth-century climate, in particular with the well-documented shift of Sahel rainfall during the 1960s. Surface temperature, sea level pressure, and precipitation changes are analyzed using combined principal component analysis (CPCA). The leading mode exhibits a monotonic shift in the 1960s, and the transition is associated with a relative cooling and pressure increase over the interior Eurasia and North Africa, and rainfall reduction over the Sahel, South Asia, and East Asia. The local circulation changes suggest that the rainfall shift results from the regional response of the summer monsoons to these continental-wide changes. A similar CPCA analysis of atmospheric general circulation model (AGCM) simulations forced by twentieth-century-observed forcings shows similar results, suggesting that origins of the climate shift reside in the sea surface temperature changes, specifically over the extratropical North Atlantic. Finally, an AGCM forced with extratropical North Atlantic cooling appears to simulate these climate impacts, at least qualitatively. The result herein shows that the observed climate signature of the 1960s abrupt shift in Eurasian and North African climate is consistent with the influence of the abrupt high-latitude North Atlantic cooling that occurred in the late 1960s. A definitive causal relationship remains to be shown, and mechanisms elucidated.

Full access
L. Huang, J. Zhai, C. Y. Sun, J. Y. Liu, J. Ning, and G.S. Zhao

Abstract

Land-use changes (LUCs) strongly influence regional climates through both the biogeochemical and biogeophysical processes. However, many studies have ignored the biogeophysical processes, which in some cases can offset the biogeochemical impacts. We integrated the field observations, satellite-retrieved data, and a conceptual land surface energy balance model to provide new evidence to fill our knowledge gap concerning how regional warming or cooling is affected by the three main types of LUCs (afforestation, cropland expansion, and urbanization) in different climate zones of China. According to our analyses, similar LUCs presented varied, even reverse, biogeophysical forcing on local temperatures across different climate regimes. Afforestation in arid and semiarid regions has caused increased net radiation that has typically outweighed increased latent evapotranspiration, thus warming has been the net biogeophysical effect. However, it has resulted in cooling in subtropical zones because the increase in net radiation has been exceeded by the increase in latent evapotranspiration. Cropland expansion has decreased the net radiation more than latent evapotranspiration, which has resulted in biogeophysical cooling in arid and semiarid regions. Conversely, it has caused warming in subtropical zones as a result of increases in net radiation and decreases in latent evapotranspiration. In all climatic regions, the net biogeophysical effects of urbanization have generally resulted in more or less warming because urbanization has led to smaller net radiation decreases than latent evapotranspiration. This study reinforces the need to adjust land-use policies to consider biogeophysical effects across different climate regimes and to adapt to and mitigate climate change.

Full access
J. Zhang, Y. Wu, C. L. Liu, Z. B. Shen, and Y. Zhang

Abstract

Aerosol samples were collected from the northwest China desert region (i.e., Minqin), a coastal suburb area (i.e., Qingdao), and an island from the Yellow Sea (i.e., Qianliyan), respectively, in spring and summer of 1995 and 1996. Samples were analyzed for major components (Al, Ca, K, Mg, and Na), carbon (RAC), and sulphur (RAS). The results show that concentration of aerosols change considerably in time and space. The application of a three end-member-mixing model indicates that dust-dominated materials contribute up to 80%–90% of total aerosols when the cold fronts pass through over the Yellow Sea. The crust-dominated aerosols carried by cold front systems may well reduce the percentage concentrations of pollutant and sea salt over the Yellow Sea. The sea salt and regional aerosols become dominant fractions in atmosphere in summer when the dust storms expire in desert regions and the southeast monsoon starts in the subtropical Pacific Ocean.

Full access
Y.-C. Lin, L.-Y. Oey, J. Wang, and K.-K. Liu

Abstract

Annual Rossby waves in northern South China Sea had previously been studied using altimetry and model data; however, how they connect to subsurface temperature fluctuations has not been examined. This study analyzed a 22-month, surface to −500-m temperature time series at 18.3°N, 115.5°E, together with satellite and other data, to show the arrivals near z ≈ −300 m and deeper cool (warm) Rossby waves after their generation near the Luzon Strait in winter (summer). Temperature fluctuations with time scales of a few weeks, and with maximum anomalies near z ≈ −100 m, were also found embedded in the smooth Rossby waves and caused by propagating eddies. Eddy fluctuations and propagation past the mooring were of two types: southwestward from southwestern Taiwan, triggered by Kuroshio intrusion that produced anticyclone–cyclone pairs in late fall and winter, and eddies propagating westward from Luzon forced by annual anomalies of wind stress curl and Kuroshio path in the Luzon Strait

Full access
G. Q. Wang, J. Y. Zhang, Y. Q. Xuan, J. F. Liu, J. L. Jin, Z. X. Bao, R. M. He, C. S. Liu, Y. L. Liu, and X. L. Yan

Abstract

Global warming will have direct impacts on regional water resources by accelerating the hydrological cycle. Hydrological simulation is an important approach to studying climate change impacts. In this paper, a snowmelt-based water balance model (SWBM) was used to simulate the effect of climate change on runoff in the Kuye River catchment of the Loess Plateau, China. Results indicated that the SWBM is suitable for simulating monthly discharge into arid catchments. The response of runoff in the Kuye River catchment to climate change is nonlinear, and runoff is more sensitive to changes in precipitation than to changes in temperature. The projections indicated that the Kuye River catchment would undergo more flooding in the 2020s, and global warming would probably shorten the main flood season in the catchment, with greater discharge occurring in August. Although projected changes in annual runoff are uncertain, the possibilities of regional water shortages and regional flooding are essential issues that need to be fully considered.

Restricted access
M. Reuter, M. Buchwitz, M. Hilker, J. Heymann, H. Bovensmann, J. P. Burrows, S. Houweling, Y. Y. Liu, R. Nassar, F. Chevallier, P. Ciais, J. Marshall, and M. Reichstein
Full access
Zhengzhao Johnny Luo, Dieter Kley, Richard H. Johnson, G. Y. Liu, Susanne Nawrath, and Herman G. J. Smit

Abstract

Multiple years of measurements of tropical upper-tropospheric temperature and humidity by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) project are analyzed in the vicinity of deep convective outflow to study the variations of temperature and humidity and to investigate the influence of the sea surface temperature (SST) on the outflow air properties. The principal findings are the following. 1) The distribution of relative humidity with respect to ice (RHi) depends on where a convective system is sampled by the MOZAIC aircraft: deep inside the system, RHi is unimodal with the mode at ~114%; near the outskirts of the system, bimodal distribution of RHi starts to emerge with a dry mode at around 40% and a moist mode at 100%. The results are compared with previous studies using in situ measurements and model simulations. It is suggested that the difference in the RHi distribution can be explained by the variation of vertical motions associated with a convective system. 2) Analysis of MOZAIC data shows that a fractional increase of specific humidity with SST, q −1 dq/dSTT, near the convective outflow is about 0.16–0.18 K−1. These values agree well with previous studies using satellite data. Because MOZAIC measurements of temperature and humidity are independent, the authors further analyze the SST dependence of RHi and temperature individually. Temperature increases with SST for both prevalent flight levels (238 and 262 hPa); RHi stays close to constant with respect to SST for 238 hPa but shows an increasing trend for the 262-hPa level. Analysis conducted in this study represents a unique observational basis against which model simulations of upper-tropospheric humidity and its connection to deep convection and SST can be evaluated.

Full access
J. A. Curry, C. A. Clayson, W. B. Rossow, R. Reeder, Y.-C. Zhang, P. J. Webster, G. Liu, and R.-S. Sheu

An integrated approach is presented for determining from several different satellite datasets all of the components of the tropical sea surface fluxes of heat, freshwater, and momentum. The methodology for obtaining the surface turbulent and radiative fluxes uses physical properties of the atmosphere and surface retrieved from satellite observations as inputs into models of the surface turbulent and radiative flux processes. The precipitation retrieval combines analysis of satellite microwave brightness temperatures with a statistical model employing satellite observations of visible/infrared radiances. A high-resolution dataset has been prepared for the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) intensive observation period (IOP), with a spatial resolution of 50 km and temporal resolution of 3 h. The high spatial resolution is needed to resolve the diurnal and mesoscale storm-related variations of the fluxes. The fidelity of the satellite-derived surface fluxes is examined by comparing them with in situ measurements obtained from ships and aircraft during the TOGA COARE IOP and from vertically integrated budgets of heat and freshwater for the atmosphere and ocean. The root-mean-square differences between the satellite-derived and in situ fluxes are dominated by limitations in the satellite sampling; these are reduced when some averaging is done, particularly for the precipitation (which is from a statistical algorithm) and the surface solar radiation (which uses spatially sampled satellite pixels). Nevertheless, the fluxes are determined with a useful accuracy, even at the highest temporal and spatial resolution. By compiling the fluxes at such high resolution, users of the dataset can decide whether and how to average for particular purposes. For example, over time, space, or similar weather events.

Full access
J. Le Marshall, J . Jung, J. Derber, M. Chahine, R. Treadon, S J. Lord, M Goldberg, W Wolf, H C. Liu, J Joiner, J. Woollen, R. Todling, P. van Delst, and Y. Tahara
Full access