Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: J.M. Livingston x
  • Refine by Access: All Content x
Clear All Modify Search
F. L. Ludwig
,
J. M. Livingston
, and
R. M. Endlich

Abstract

Observed winds and temperature profiles can be used to generate three-dimensional, mass-conserving wind fields that reflect topographical influences. The concept of critical dividing streamlines is used to define quasi-horizontal, flow-confining two-dimensional surfaces. Adjustment toward two-dimensional nondivergence on those surfaces forces flow around obstacles under stable conditions when some flow surfaces intersect higher terrain features. Unlike most mass-conserving wind models, the approach described here includes objective evaluation of the effects of atmospheric stability. Efficiency is achieved by casting the three-dimensional problem as several two-dimensional problems and by using an iterative scheme to adjust toward nondivergence. A 20 × 20 × 5 gridpoint analysis requires approximately 2 min on an IBM-AT personal computer.

Full access
P. B. Russell
,
J. M. Livingston
, and
E. E. Uthe

Abstract

Many theoretical studies have shown that aerosol-induced changes in the earth-atmosphere albedo might be an important climate change mechanism. However, there has been a lack of experimental documentation of albedo changes caused by actual aerosol layers with measured properties. Here we report an incident in which the measured surface-plus-atmosphere albedo was increased by about 0.01 (from 0.11 to 0.12) by a transient aerosol layer. We also report simultaneous measurements of the aerosol by a multi-wavelength sunphotometer, a lidar, a nephelometer and other radiometers, and we use these aerosol measurements to deduce an expected albedo change for comparison to the measurements.

Specifically, we combine the aerosol measurements with several assumed refractive indices to derive a time-dependent aerosol optical model for the day of the incident. We then use this model in a two-stream radiative calculation to compute the expected time-dependent aerosol-layer albedo. Finally, we compute aerosol-plus-surface albedos by modifying a familiar expression to account for changing solar zenith angle and the diffuseness of surface reflectivity. Use of the aerosol model in this expression yields a calculated time-dependent atmosphere-plus-surface albedo that agrees with the measurements, provided an aerosol refractive index of about 1.50−0.01i is assumed. This refractive index value is in accord with the aerosol backscatter-to-extinction ratios measured simultaneously by the lidar and sunphotometer.

To our knowledge, this incident is the first in which an aerosol-induced albedo change and the responsible aerosol have been simultaneously measured to this degree of detail. Although the incident was too brief to be climatically significant, the analysis is significant because it provides a practical methodology for incorporating measured properties of aerosol layers into efficient albedo-change calculations. This methodology, which uses ground-based measurements to characterize elevated aerosol layers, could be applied to more widespread and persistent (hence, climatically significant) aerosol layers. Moreover, the agreement between measured and calculated albedos in this incident provides an initial validation of the methodology for not uncommon surface and aerosol conditions. More general measurements, including better complex refractive index determinations, are required to further validate and apply the methodology.

Full access
J. M. Livingston
,
B. Schmid
,
P. B. Russell
,
J. R. Podolske
,
J. Redemann
, and
G. S. Diskin

Abstract

In January–February 2003, the 14-channel NASA Ames airborne tracking sun photometer (AATS) and the NASA Langley/Ames diode laser hygrometer (DLH) were flown on the NASA DC-8 aircraft. The AATS measured column water vapor on the aircraft-to-sun path, while the DLH measured local water vapor in the free stream between the aircraft fuselage and an outboard engine cowling. The AATS and DLH measurements have been compared for two DC-8 vertical profiles by differentiating the AATS column measurement and/or integrating the DLH local measurement over the altitude range of each profile (7.7–10 km and 1.1–12.5 km). These comparisons extend, for the first time, tests of AATS water vapor retrievals to altitudes >∼6 km and column contents <0.1 g cm−2. To the authors’ knowledge, this is the first time suborbital spectroscopic water vapor measurements using the 940-nm band have been tested in conditions so high and dry. Values of layer water vapor (LWV) calculated from the AATS and DLH measurements are highly correlated for each profile. The composite dataset yields r2 0.998, rms difference 7.7%, and bias (AATS minus DLH) 1.0%. For water vapor densities AATS and DLH had r2 0.968, rms difference 27.6%, and bias (AATS minus DLH) −4.2%. These results for water vapor density compare favorably with previous comparisons of AATS water vapor to in situ results for altitudes <∼6 km, columns ∼0.1 to 5 g cm−2, and densities ∼0.1 to 17 g m−3.

Full access
P. B. Russell
,
J. M. Livingston
,
T. J. Swissler
,
M. P. McCormick
,
W. P. Chu
, and
T. J. Pepin

Abstract

We present a model of stratospheric aerosol optical properties (refractive index and relative size distribution) and their variability. The model's purposes are 1) providing flexible, efficient means for converting between different aerosol macroproperties (e.g., number or mass concentration, extinction or backscatter coefficient), and 2) quantifying the uncertainties in the conversion process. The latter purpose is achieved by including the results of a sensitivity analysis in the model output products.

The model has three layers, the boundaries of which are defined by tropopause height. Each layer includes a set of empirically based refractive indices and relative size distribution types. In contrast to previous models, this model allows for a range of sulfuric acid and ammonium sulfate refractive indices within the “inner stratospheric” layer (∼2 to 20 km above the tropopause, where the major peak in aerosol mixing ratio occurs). We show that nine different analytical types of size distribution previously recommended for this layer can be parameterized in terms of channel ratio—i.e., the relative size distribution indicator that has been extensively measured by dustsondes.

When so parameterized, all nine inner stratospheric function types give very similar results for the several conversion ratios of interest. This parameterization allows considerable saving of computer time while preserving the flexibility to handle certain types of size distribution change. We show that the inner stratospheric parameterization works because all nine inner stratospheric size distribution types are relatively narrow, and their optical integrals of interest are determined primarily by a size range that is well characterized by channel ratio.

Data from previous measurements made near the tropopause are used to demonstrate that, in that region, size distributions are broader than any of the inner stratospheric types, and that their optical integrals are strongly influenced by particles too large to be characterized by channel ratio. Hence, in the layer near the tropopause, conversion ratios can differ significantly from the inner stratospheric values; consequently, parameterization by channel ratios is not successful.

We develop methods for deriving vertical profiles of several conversion ratios and their uncertainties. We also demonstrate an application of the model: deriving profiles of number density and its uncertainty from satellite-measured profiles of extinction and its uncertainty. A companion paper applies the model to the task of validating satellite measurements of stratospheric aerosol extinction.

Full access
J. Redemann
,
B. Schmid
,
J. A. Eilers
,
R. Kahn
,
R. C. Levy
,
P. B. Russell
,
J. M. Livingston
,
P. V. Hobbs
,
W. L. Smith Jr.
, and
B. N. Holben

Abstract

As part of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment, 10 July–2 August 2001, off the central East Coast of the United States, the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the University of Washington’s Convair 580 (CV-580) research aircraft during 10 flights (∼45 flight hours). One of the main research goals in CLAMS was the validation of satellite-based retrievals of aerosol properties. The goal of this study in particular was to perform true over-ocean validations (rather than over-ocean validation with ground-based, coastal sites) at finer spatial scales and extending to longer wavelengths than those considered in previous studies. Comparisons of aerosol optical depth (AOD) between the Aerosol Robotic Network (AERONET) Cimel instrument at the Chesapeake Lighthouse and airborne measurements by AATS-14 in its vicinity showed good agreement with the largest r-square correlation coefficients at wavelengths of 0.38 and 0.5 μm (>0.99). Coordinated low-level flight tracks of the CV-580 during Terra overpass times permitted validation of over-ocean Moderate Resolution Imaging Spectroradiometer (MODIS) level 2 (MOD04_L2) multiwavelength AOD data (10 km × 10 km, nadir) in 16 cases on three separate days. While the correlation between AATS-14- and MODIS-derived AOD was weak with an r square of 0.55, almost 75% of all MODIS AOD measurements fell within the prelaunch estimated uncertainty range Δτ = ±0.03 ± 0.05τ. This weak correlation may be due to the small AODs (generally less than 0.1 at 0.5 μm) encountered in these comparison cases. An analogous coordination exercise resulted in seven coincident over-ocean matchups between AATS-14 and Multiangle Imaging Spectroradiometer (MISR) measurements. The comparison between AATS-14 and the MISR standard algorithm regional mean AODs showed a stronger correlation with an r square of 0.94. However, MISR AODs were systematically larger than the corresponding AATS values, with an rms difference of ∼0.06. AATS data collected during nine extended low-level CV-580 flight tracks were used to assess the spatial variability in AOD at horizontal scales up to 100 km. At UV and midvisible wavelengths, the largest absolute gradients in AOD were 0.1–0.2 per 50-km horizontal distance. In the near-IR, analogous gradients rarely reached 0.05. On any given day, the relative gradients in AOD were remarkably similar for all wavelengths, with maximum values of 70% (50 km)−1 and more typical values of 25% (50 km)−1. The implications of these unique measurements of AOD spatial variability for common validation practices of satellite data products and for comparisons to large-scale aerosol models are discussed.

Full access
P.B. Russell
,
M.P. McCormick
,
T.J. Swissler
,
W.P. Chu
,
J.M. Livingston
,
W.H. Fuller
,
J.M. Rosen
,
D.J. Hofmann
,
L.R. McMaster
,
D.C. Woods
, and
T.J. Pepin

Abstract

We show results from the first set of measurements conducted to validate extinction data from the satellite sensor SAM II. Dustsonde-measured number density profiles and lidar-measured backscattering profiles for two days are converted to extinction profiles using the optical modeling techniques described in the companion Paper I (Russell et al., 1981). At heights ∼2 km and more above the tropopause, the dustsonde data are used to restrict the range of model size distributions, thus reducing uncertainties in the conversion process. At all heights, measurement uncertainties for each sensor are evaluated, and these are combined with conversion uncertainties to yield the total uncertainty in derived data profiles.

The SAM II measured, dustsonde-inferred, and lidar-inferred extinction profiles for both days are shown to agree within their respective uncertainties at all heights above the tropopause. Near the tropopause, this agreement depends on the use of model size distributions with more relatively large particles (radius ≳0.6 μm) than are present in distributions used to model the main stratospheric aerosol peak. The presence of these relatively large particles is supported by measurements made elsewhere and is suggested by in situ size distribution measurements reported here. These relatively large particles near the tropopause are likely to have an important bearing on the radiative impact of the total stratospheric aerosol.

The agreement in this experiment supports the validity of the SAM II extinction data and the SAM II uncertainty estimates derived from an independent error analysis. Recommendations are given for reducing the uncertainties of future correlative experiments.

Full access
P. B. Russell
,
J. Redemann
,
B. Schmid
,
R. W. Bergstrom
,
J. M. Livingston
,
D. M. McIntosh
,
S. A. Ramirez
,
S. Hartley
,
P. V. Hobbs
,
P. K. Quinn
,
C. M. Carrico
,
M. J. Rood
,
E. Öström
,
K. J. Noone
,
W. von Hoyningen-Huene
, and
L. Remer

Abstract

Aerosol single scattering albedo ω (the ratio of scattering to extinction) is important in determining aerosol climatic effects, in explaining relationships between calculated and measured radiative fluxes, and in retrieving aerosol optical depths from satellite radiances. Recently, two experiments in the North Atlantic region, the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2), determined aerosol ω by a variety of techniques. The techniques included fitting of calculated to measured radiative fluxes; retrievals of ω from skylight radiances; best fits of complex refractive index to profiles of backscatter, extinction, and size distribution; and in situ measurements of scattering and absorption at the surface and aloft. Both TARFOX and ACE-2 found a fairly wide range of values for ω at midvisible wavelengths (∼550 nm), with 0.85 ≤ ω midvis ≤ 0.99 for the marine aerosol impacted by continental pollution. Frequency distributions of ω could usually be approximated by lognormals in ω maxω, with some occurrence of bimodality, suggesting the influence of different aerosol sources or processing. In both TARFOX and ACE-2, closure tests between measured and calculated radiative fluxes yielded best-fit values of ω midvis of 0.90 ± 0.04 for the polluted boundary layer. Although these results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., thermal offsets, unknown gas absorption). The other techniques gave larger values for ω midvis for the polluted boundary layer, with a typical result of ω midvis = 0.95 ± 0.04. Current uncertainties in ω are large in terms of climate effects. More tests are needed of the consistency among different methods and of humidification effects on ω.

Full access
Rolf H. Reichle
,
Gabrielle J. M. De Lannoy
,
Qing Liu
,
Joseph V. Ardizzone
,
Andreas Colliander
,
Austin Conaty
,
Wade Crow
,
Thomas J. Jackson
,
Lucas A. Jones
,
John S. Kimball
,
Randal D. Koster
,
Sarith P. Mahanama
,
Edmond B. Smith
,
Aaron Berg
,
Simone Bircher
,
David Bosch
,
Todd G. Caldwell
,
Michael Cosh
,
Ángel González-Zamora
,
Chandra D. Holifield Collins
,
Karsten H. Jensen
,
Stan Livingston
,
Ernesto Lopez-Baeza
,
José Martínez-Fernández
,
Heather McNairn
,
Mahta Moghaddam
,
Anna Pacheco
,
Thierry Pellarin
,
John Prueger
,
Tracy Rowlandson
,
Mark Seyfried
,
Patrick Starks
,
Zhongbo Su
,
Marc Thibeault
,
Rogier van der Velde
,
Jeffrey Walker
,
Xiaoling Wu
, and
Yijian Zeng

Abstract

The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (within 3 days from real time) and provides 3-hourly, global, 9-km resolution estimates of surface (0–5 cm) and root-zone (0–100 cm) soil moisture and land surface conditions. This study presents an overview of the L4_SM algorithm, validation approach, and product assessment versus in situ measurements. Core validation sites provide spatially averaged surface (root zone) soil moisture measurements for 43 (17) “reference pixels” at 9- and 36-km gridcell scales located in 17 (7) distinct watersheds. Sparse networks provide point-scale measurements of surface (root zone) soil moisture at 406 (311) locations. Core validation site results indicate that the L4_SM product meets its soil moisture accuracy requirement, specified as an unbiased RMSE (ubRMSE, or standard deviation of the error) of 0.04 m3 m−3 or better. The ubRMSE for L4_SM surface (root zone) soil moisture is 0.038 m3 m−3 (0.030 m3 m−3) at the 9-km scale and 0.035 m3 m−3 (0.026 m3 m−3) at the 36-km scale. The L4_SM estimates improve (significantly at the 5% level for surface soil moisture) over model-only estimates, which do not benefit from the assimilation of SMAP brightness temperature observations and have a 9-km surface (root zone) ubRMSE of 0.042 m3 m−3 (0.032 m3 m−3). Time series correlations exhibit similar relative performance. The sparse network results corroborate these findings over a greater variety of climate and land cover conditions.

Full access