Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jaclyn Clement Kinney x
  • Refine by Access: All Content x
Clear All Modify Search
Matthew Watts
,
Wieslaw Maslowski
,
Younjoo J. Lee
,
Jaclyn Clement Kinney
, and
Robert Osinski

Abstract

The Arctic sea ice response to a warming climate is assessed in a subset of models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6), using several metrics in comparison with satellite observations and results from the Pan-Arctic Ice Ocean Modeling and Assimilation System and the Regional Arctic System Model. Our study examines the historical representation of sea ice extent, volume, and thickness using spatial analysis metrics, such as the integrated ice edge error, Brier score, and spatial probability score. We find that the CMIP6 multimodel mean captures the mean annual cycle and 1979–2014 sea ice trends remarkably well. However, individual models experience a wide range of uncertainty in the spatial distribution of sea ice when compared against satellite measurements and reanalysis data. Our metrics expose common and individual regional model biases, which sea ice temporal analyses alone do not capture. We identify large ice edge and ice thickness errors in Arctic subregions, implying possible model specific limitations in or lack of representation of some key physical processes. We postulate that many of them could be related to the oceanic forcing, especially in the marginal and shelf seas, where seasonal sea ice changes are not adequately simulated. We therefore conclude that an individual model’s ability to represent the observed/reanalysis spatial distribution still remains a challenge. We propose the spatial analysis metrics as useful tools to diagnose model limitations, narrow down possible processes affecting them, and guide future model improvements critical to the representation and projections of Arctic climate change.

Open access
Younjoo J. Lee
,
Matthew Watts
,
Wieslaw Maslowski
,
Jaclyn Clement Kinney
, and
Robert Osinski

Abstract

Arctic sea ice loss in response to a warming climate is assessed in 42 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Sea ice observations show a significant acceleration in the rate of decline commencing near the turn of the twenty-first century. It is our assertion that state-of-the-art climate models should qualitatively reflect this accelerated trend within the limitations of internal variability and observational uncertainty. Our analysis shows that individual CMIP6 simulations of sea ice depict a wide range of model spread on biases and anomaly trends both across models and among their ensemble members. While the CMIP6 multimodel mean captures the observed sea ice area (SIA) decline relatively well, an individual model’s ability to represent the acceleration in sea ice decline remains a challenge. Seventeen (40%) out of 42 CMIP6 models and 37 (13%) out of the total 286 ensemble members reasonably capture the observed trends and acceleration in SIA decline. In addition, a larger ensemble size appears to increase the odds for a model to include at least one ensemble member skillfully representing the accelerated SIA trends. Simulations of sea ice volume (SIV) show much larger spread and uncertainty than SIA; however, due to limited availability of sea ice thickness data, these are not as well constrained by observations. Finally, we find that models with more ocean heat transport simulate larger sea ice declines, which suggests an emergent constraint in CMIP6 ensembles. This relationship points to the need for better understanding and modeling of ice–ocean interactions, especially with respect to frazil ice growth.

Open access
Wilbert Weijer
,
Milena Veneziani
,
Jaclyn Clement Kinney
,
Wieslaw Maslowski
,
Jiaxu Zhang
, and
Michael Steele
Open access