Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: James H. Ruppert Jr. x
  • All content x
Clear All Modify Search
James H. Ruppert Jr. and Richard H. Johnson

Abstract

Atmospheric soundings, radar, and air–sea flux measurements collected during Dynamics of the Madden–Julian Oscillation (DYNAMO) are employed to study MJO convective onset (i.e., the transition from shallow to deep convection) in the tropical Indian Ocean. The findings indicate that moistening of the low–midtroposphere during the preonset stage of the MJO is achieved by simultaneous changes in the convective cloud population and large-scale circulation. Namely, cumuliform clouds deepen and grow in areal coverage as the drying by large-scale subsidence and horizontal (westerly) advection wane. The reduction of large-scale subsidence is tied to the reduction of column radiative cooling during the preonset stage, which ultimately links back to the evolving cloud population. While net column moistening in the preonset stage is tied to large-scale circulation changes, a new finding of this study is the high degree to which the locally driven diurnal cycle invigorates convective clouds and cumulus moistening each day. This diurnal cycle is manifest in a daytime growth of cumulus clouds (in both depth and areal coverage) in response to oceanic diurnal warm layers, which drive a daytime increase of the air–sea fluxes of heat and moisture. This diurnally modulated convective cloud field exhibits prominent mesoscale organization in the form of open cells and horizontal convective rolls. It is hypothesized that the diurnal cycle and mesoscale cloud organization characteristic of the preonset stage of the MJO represent two manners in which local processes promote more vigorous daily-mean column moistening than would otherwise occur.

Full access
James H. Ruppert Jr. and Lance F. Bosart

Abstract

This study documents the high-amplitude mesoscale gravity wave (MGW) event of 7 March 2008 in which two MGWs strongly impacted the sensible weather over a large portion of the Southeast United States. These MGWs exhibited starkly contrasting character despite propagating within similar environments. The primary (i.e., long lived) MGW was manifest by a solitary wave of depression associated with rapid sinking motion and adiabatic warming, while the secondary (short lived) MGW was manifest by a solitary wave of elevation (“MGWEL”), dominated by rising motion and moist adiabatic cooling. Genesis of the primary MGW occurred as a strong cold front arrived at the foot of Mexico’s high terrain and perturbed the appreciable overriding flow. The resulting gravity wave became ducted in the presence of a low-level frontal stable layer, and caused surface pressure falls up to ~4 hPa. The MGW later amplified as it became coupled with a stratiform precipitation system, which led to its evolution into an intense mesohigh–wake low couplet. This couplet propagated as a ducted MGW attached to a stratiform system for ~12 h thereafter, and induced rapid surface pressure falls of ≥10 hPa (including a fall of 6.7 hPa in 10 min), rapid wind vector changes (e.g., 17 m s−1 in 25 min), and high wind gusts (e.g., 20 m s−1) across several states. MGWEL appeared within the remnants of a squall line, and was manifest by a sharp pressure ridge of ~6 hPa with a narrow embedded rainband following the motion of a surface cold front. MGWEL bore resemblance to previously documented gravity waves formed by density currents propagating through stable environments.

Full access
James H. Ruppert Jr. and Cathy Hohenegger

Abstract

This study investigates the diurnal cycle of tropical organized deep convection and the feedback in large-scale circulation. By considering gravity wave phase speeds, we find that the circulation adjustment into weak temperature gradient (WTG) balance occurs rapidly (<6 h) relative to diurnal diabatic forcing on the spatial scales typical of organized convection (≤500 km). Convection-permitting numerical simulations of self-aggregation in diurnal radiative–convective equilibrium (RCE) are conducted to explore this further. These simulations depict a pronounced diurnal cycle of circulation linked to organized convection, which indeed maintains WTG balance to first order. A set of sensitivity experiments is conducted to assess what governs the diurnal cycle of organized convection. We find that the “direct radiation–convection interaction” (or lapse-rate) mechanism is of primary importance for diurnal precipitation range, while the “dynamic cloudy–clear differential radiation” mechanism amplifies the range by approximately 30%, and delays the nocturnal precipitation peak by around 5 h. The differential radiation mechanism therefore explains the tendency for tropical heavy rainfall to peak in the early morning, while the lapse-rate mechanism primarily governs diurnal amplitude. The diurnal evolution of circulation can be understood as follows. While nocturnal deep convection invigorated by cloud-top cooling (i.e., the lapse-rate mechanism) leads to strong bottom-heavy circulation at nighttime, the localized (i.e., differential) top-heavy shortwave warming in the convective region invigorates circulation at upper levels in daytime. A diurnal evolution of the circulation therefore arises, from bottom heavy at nighttime to top heavy in daytime, in a qualitatively consistent manner with the observed diurnal pulsing of the Hadley cell driven by the ITCZ.

Full access
James H. Ruppert Jr. and Fuqing Zhang

Abstract

An unfiltered zonal Hovmöller depiction of rainfall in the Maritime Continent (MC) reveals remarkable spatiotemporal continuity of zonally propagating disturbances with a diurnal period, which endure over multiple days and propagate faster than the individual convective storms they coupled with. This phenomenon and its sensitivity to the Madden–Julian oscillation (MJO) during the 2011/12 Dynamics of the MJO (DYNAMO) field campaign is examined here through a well-validated, convection-permitting model simulation conducted on a large domain. We find that these disturbances are zonally propagating diurnal gravity waves excited by vigorous nocturnal mesoscale convective systems over Sumatra and Borneo. These gravity waves are diurnally phase locked: their wavelength very closely matches the distance between these two islands (~1500 km), while their particular zonal phase speed (~±17 m s−1) allows them to propagate this distance in one diurnal cycle. We therefore hypothesize that these waves are amplified by resonant interaction due to diurnal phase locking. While these zonal gravity waves decouple from convection once beyond the MC, their divergent flow signature endures well across the Indian Ocean, provoking the notion that they may influence rainfall at far remote locations. The exact controls over this zonal phase speed remain uncertain; we note, however, that it is roughly consistent with diurnal offshore-propagating modes documented previously. Further study is required to tie this down, and more generally, to understand the sensitivity of these modes to background flow strength and the geography of the MC.

Full access
James H. Ruppert Jr., Richard H. Johnson, and Angela K. Rowe

Abstract

The diurnal cycle of the local circulation, rainfall, and heat and moisture budgets is investigated in Taiwan's heavy rain (mei-yu) season using data from the 2008 Southwest Monsoon Experiment/Terrain-influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX). Comparisons are made between an undisturbed (UNDIST; 22–29 May) and disturbed period (DIST; 31 May–4 June). Many aspects of the diurnal evolution in surface flows and rainfall were similar during both periods. At night and during early morning hours, the low-level southwesterly flow was deflected around Taiwan's main topographic barrier, the Central Mountain Range (CMR), with rainfall focused near areas of enhanced offshore confluence created by downslope and land-breeze flows. During the day, the flow switched to onshore and upslope, rainfall shifted inland, and deep convection developed along the coastal plains and windward slopes. Atmospheric budget analysis indicates a day-to-evening transition of convective structure from shallow to deep to stratiform. Evaporation associated with the evening/nighttime stratiform precipitation likely assisted the nocturnal katabatic flow.

Though the flow impinging on Taiwan was blocked during both periods, a very moist troposphere and strengthened low-level oncoming flow during DIST resulted in more widespread and intense rainfall that was shifted to higher elevations, which resembled a more weakly blocked regime. Correspondingly, storm cores were tilted upslope during DIST, in contrast to the more erect storms characteristic of UNDIST. There were much more lofted precipitation-sized ice hydrometeors within storms during DIST, the upslope advection of which led to extensive stratiform rain regions overlying the CMR peaks, and the observed upslope shift in rainfall.

Full access
James H. Ruppert Jr., Xingchao Chen, and Fuqing Zhang

Abstract

Long-lived, zonally propagating diurnal rainfall disturbances are a highly pronounced and common feature in the Maritime Continent (MC). A recent study argues that these disturbances can be explained as diurnally phase-locked gravity waves. Here we explore the origins of these waves through regional cloud-permitting numerical model experiments. The gravity waves are reproduced and isolated in the model framework through the combined use of realistic geography and diurnally cyclic lateral boundary conditions representative of both characteristic easterly and westerly background zonal flow regimes. These flow regimes are characteristic of the Madden–Julian oscillation (MJO) suppressed and active phase in the MC, respectively. Tests are conducted wherein Borneo, Sumatra, or both islands and/or their orography are removed. These tests imply that the diurnal gravity waves are excited and maintained directly by latent heating from the vigorous mesoscale convective systems (MCSs) that form nocturnally in both Borneo and Sumatra. Removing orography has only a secondary impact on both the MCSs and the gravity waves, implying that it is not critical to these waves. We therefore hypothesize that diurnal gravity waves are fundamentally driven by mesoscale organized deep convection, and are only sensitive to orography to the measure that the convection is affected by the orography and its mesoscale flows. Factor separation further reveals that the nonlinear interaction of synchronized diurnal cycles in Sumatra and Borneo slightly amplifies this gravity wave mode compared to if either island existed in isolation. This nonlinear feedback appears most prominently at longitudes directly between the two islands.

Free access
Xingchao Chen, Fuqing Zhang, and James H. Ruppert Jr.

Abstract

The influence of the boreal summer intraseasonal oscillation (BSISO) on the diurnal cycle of coastal rainfall over south China during the mei-yu (heavy rainfall) season is investigated using the OLR-based Madden–Julian oscillation index (OMI), satellite rainfall data, and atmospheric reanalysis. Results show that the mei-yu season coastal rainfall is enhanced during the BSISO phase 1 (convectively active phase over the western Indian Ocean), with 25% greater rainfall than the climatological regional mean. Rainfall is suppressed during the BSISO phases 4 and 5 (convectively active phase in the Bay of Bengal and South China Sea), with negative rainfall anomalies of 39% and 46%, respectively. During phase 1, the rainfall enhancement is mostly over the inland region during the afternoon, while there is little diurnal variability of the rainfall anomaly offshore. During phases 4 and 5, the rainfall suppression is considerably stronger over the offshore region in the morning, whereas stronger rainfall suppression occurs inland during the afternoon. In phase 8, positive rainfall anomalies are found over the offshore region with a peak from the morning to the early afternoon, whereas negative rainfall anomalies are found over the inland region with the strongest suppression in the late afternoon. Analysis of phase composites and horizontal moisture advection shows that the diurnal variation of rainfall anomalies over the south China coastal area during different BSISO phases can be interpreted as the interaction between the large-scale anomalous moisture advection and the local land and sea breeze circulations.

Full access
Paul E. Ciesielski, Richard H. Johnson, Wayne H. Schubert, and James H. Ruppert Jr.

Abstract

During the 2011 special observing period of the Dynamics of the Madden–Julian Oscillation (DYNAMO) field experiment, two sounding arrays were established over the central Indian Ocean, one north and one south of the equator, referred to here as the NSA and SSA, respectively. Three-hourly soundings from these arrays augmented by observations of radiation and rainfall are used to investigate the diurnal cycle of ITCZ convection during the MJO suppressed phase. During the first half of October, when convection was suppressed over the NSA but prominent over the SSA, the circulation over the sounding arrays could be characterized as a local Hadley cell. Strong rising motion was present within the ITCZ extending across the SSA with compensating subsidence over the NSA. A prominent diurnal pulsing of this cell was observed, impacting conditions on both sides of the equator, with the cell running strongest in the early morning hours (0500–0800 LT) and notably weakening later in the day (1700–2000 LT). The declining daytime subsidence over the NSA may have assisted the moistening of the low to midtroposphere there during the pre-onset stage of the MJO. Apparent heating Q 1 within the ITCZ exhibited a diurnal evolution from early morning bottom-heavy profiles to weaker daytime top-heavy profiles, indicating a progression from convective to stratiform precipitation. Making use of the weak temperature gradient approximation, results suggest that both horizontal radiative heating gradients and direct cloud radiative forcing have an important influence on diurnal variations of vertical motion and convection within the ITCZ.

Full access
Richard H. Johnson, Paul E. Ciesielski, James H. Ruppert Jr., and Masaki Katsumata

Abstract

The Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign, conducted over the Indian Ocean from October 2011 to March 2012, was designed to study the initiation of the Madden–Julian oscillation (MJO). Two prominent MJOs occurred in the experimental domain during the special observing period in October and November. Data from a northern and a southern sounding array (NSA and SSA, respectively) have been used to investigate the apparent heat sources and sinks (Q 1 and Q 2) and radiative heating rates Q R throughout the life cycles of the two MJO events. The MJO signal was far stronger in the NSA than the SSA. Time series of Q 1, Q 2, and the vertical eddy flux of moist static energy reveal an evolution of cloud systems for both MJOs consistent with prior studies: shallow, nonprecipitating cumulus during the suppressed phase, followed by cumulus congestus, then deep convection during the active phase, and finally stratiform precipitation. However, the duration of these phases was shorter for the November MJO than for the October event. The profiles of Q 1 and Q 2 for the two arrays indicate a greater stratiform rain fraction for the NSA than the SSA—a finding supported by TRMM measurements. Surface rainfall rates and net tropospheric Q R determined as residuals from the budgets show good agreement with satellite-based estimates. The cloud radiative forcing was approximately 20% of the column-integrated convective heating and of the same amplitude as the normalized gross moist stability, leaving open the possibility of radiative–convective instability for the two MJOs.

Full access
Richard H. Johnson, Russ S. Schumacher, James H. Ruppert Jr., Daniel T. Lindsey, Julia E. Ruthford, and Lisa Kriederman

Abstract

The meteorological conditions associated with the rapid intensification and spread of the catastrophic Waldo Canyon fire on 26 June 2012 are studied. The fire caused two fatalities, destroyed 347 homes in Colorado Springs, and resulted in insurance losses of nearly $0.5 billion (U.S. dollars), making it the most economically destructive fire in Colorado’s history. While the fire was first discovered on 23 June, the paper focuses on 26 June, when it grew explosively and rapidly advanced eastward into a heavily populated area on the west side of Colorado Springs. Near-record hot and dry conditions prevailed over the Intermountain West prior to the fire, along with a persistent upper-level ridge. On 26 June, a narrow tongue of moist air aloft originating over the Southwest shifted from Utah into Colorado. Dry conditions at low levels and moisture aloft set the stage for strong microburst-producing thunderstorms to develop over Colorado. Convective cells first formed at midday over the San Juan Mountains, later consolidating into a thunderstorm complex that produced an organized convective outflow with strong, gusty winds at the surface. The leading gust front associated with the outflow moved past the Waldo Canyon fire at the hottest time of the day with recorded wind gusts up to 26 m s−1. The rapid eastward advance of the fire, as well as an onset of pyrocumulonimbus and lightning activity, was timed with the passage of the gust front. A numerical simulation, initiated one day earlier, produced mesoscale features closely resembling those observed, including the gust front passage at the fire and the vertical structure of the convective outflow.

Full access