Search Results

You are looking at 1 - 10 of 34 items for

  • Author or Editor: James Marquis x
  • Refine by Access: All Content x
Clear All Modify Search
James N. Marquis
,
Yvette P. Richardson
, and
Joshua M. Wurman

Abstract

During the International H2O Project, mobile radars collected high-resolution data of several 0.5–2-km-wide vertically oriented vortices (or misocyclones) along at least five mesoscale airmass boundaries. This study analyzes the properties of the misocyclones in three of these datasets—3, 10, and 19 June 2002—to verify findings from finescale numerical models and other past observations of misocyclones and to further the understanding of the role that they play in the initiation of deep moist convection and nonsupercell tornadoes. Misocyclones inflect or disjoint the swath of low-level convergence along each boundary to varying degrees depending on the size of their circulations. When several relatively large misocyclones are next to each other, the shape of low-level convergence along each boundary is arranged into a staircase pattern. Mergers of misocyclones are an important process in the evolution of the vorticity field, as a population of small vortices consolidates into a smaller number of larger ones. Additionally, merging misocyclones may affect the mixing of thermodynamic fields in their vicinity when the merger axis is perpendicular to the boundary. Misocyclones interact with linear and cellular structures in the planetary boundary layers (PBLs) of the air masses adjacent to each boundary. Cyclonic low-level vertical vorticity generated by both types of structures makes contact with each boundary and sometimes is incorporated into preexisting misocyclones. Intersections of either type of PBL structure with the boundary result in strengthened pockets of low-level convergence and, typically, strengthened misocyclones.

Full access
T. Connor Nelson
,
James Marquis
,
John M. Peters
, and
Katja Friedrich

Abstract

This study synthesizes the results of 13 high-resolution simulations of deep convective updrafts forming over idealized terrain using environments observed during the RELAMPAGO and CACTI field projects. Using composite soundings from multiple observed cases, and variations upon them, we explore the sensitivity of updraft properties (e.g., size, buoyancy, and vertical pressure gradient forces) to influences of environmental relative humidity, wind shear, and mesoscale orographic forcing that support or suppress deep convection initiation (CI). Emphasis is placed on differentiating physical processes affecting the development of updrafts (e.g., entrainment-driven dilution of updrafts) in environments typifying observed successful and null (i.e., no CI despite affirmative operational forecasts) CI events. Thermally induced mesoscale orographic lift favors the production of deep updrafts originating from ∼1- to 2-km-wide boundary layer thermals. Simulations without terrain forcing required much larger (∼5-km-wide) thermals to yield precipitating convection. CI outcome was quite sensitive to environmental relative humidity; updrafts with increased buoyancy, depth, and intensity thrived in otherwise inhospitable environments by simply increasing the free-tropospheric relative humidity. This implicates the entrainment of free-tropospheric air into updrafts as a prominent governor of CI, consistent with previous studies. Sensitivity of CI to the environmental wind is manifested by 1) low-level flow affecting the strength and depth of mesoscale convergence along the terrain, and 2) clouds encountering updraft-suppressing pressure gradient forces while interacting with vertical wind shear in the free troposphere. Among the ensemble of thermals occurring in each simulation, the widest deep updrafts in each simulation were the most sensitive to environmental influences.

Restricted access
James Marquis
,
Yvette Richardson
,
Joshua Wurman
, and
Paul Markowski

Abstract

Fine-resolution single- and dual-Doppler data were collected in the tornadic region of a supercell storm intercepted by two Doppler-on-Wheels radars on 30 April 2000 near Crowell, Texas. Eleven dual-Doppler analyses characterize the 2D and 3D near-surface wind fields associated with a tornado during a 13-min period. An interesting evolution of the low-level rotation is observed. Initially concentric “tornado” (∼500 m wide) and “tornado–cyclone” (∼2 km wide) radar velocity couplets make a transition into a solitary intermediate-sized (∼750 m wide) circulation that widens and makes a further transition into a two-celled multiple-vortex structure with an asymmetric distribution of vertical vorticity. The asymmetry and eventual disruption of the multiple-vortex structure may have been partially controlled by locally strong outflow winds that affect the convergence fields in its vicinity. A smaller (∼500 m wide) tornado embedded in a broad area of rotation is subsequently observed. The dual-Doppler wind fields are also used to characterize aspects of the storm-scale flow. Locally surging outflow winds result in a double rear-flank gust front structure. The tornado and tornado–cyclone are completely surrounded by outflow at all observation times and air parcels traced within the inflow to the storm rise along the gust front rather than enter the tornado near the ground.

Full access
T. Connor Nelson
,
James Marquis
,
Adam Varble
, and
Katja Friedrich

Abstract

The Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI) projects deployed a high-spatiotemporal-resolution radiosonde network to examine environments supporting deep convection in the complex terrain of central Argentina. This study aims to characterize atmospheric profiles most representative of the near-cloud environment (in time and space) to identify the mesoscale ingredients affecting storm initiation and growth. Spatiotemporal autocorrelation analysis of the soundings reveals that there is considerable environmental heterogeneity, with boundary layer thermodynamic and kinematic fields becoming statistically uncorrelated on scales of 1–2 h and 30 km. Using this as guidance, we examine a variety of environmental parameters derived from soundings collected within close proximity (30 km in space and 30 min in time) of 44 events over 9 days where the atmosphere either: 1) supported the initiation of sustained precipitating convection, 2) yielded weak and short-lived precipitating convection, or 3) produced no precipitating convection in disagreement with numerical forecasts from convection-allowing models (i.e., Null events). There are large statistical differences between the Null event environments and those supporting any convective precipitation. Null event profiles contained larger convective available potential energy, but had low free-tropospheric relative humidity, higher freezing levels, and evidence of limited horizontal convergence near the terrain at low levels that likely suppressed deep convective growth. We also present evidence from the radiosonde and satellite measurements that flow–terrain interactions may yield gravity wave activity that affects CI outcome.

Full access
James Marquis
,
Yvette Richardson
,
Paul Markowski
,
David Dowell
, and
Joshua Wurman

Abstract

Dual-Doppler wind synthesis and ensemble Kalman filter analyses produced by assimilating Doppler-on-Wheels velocity data collected in four tornadic supercells are examined in order to further understand the maintenance of tornadoes. Although tornado-scale features are not resolved in these analyses, larger-scale processes involved with tornado maintenance are well represented.

The longest-lived tornado is maintained underneath the midlevel updraft within a zone of low-level horizontal convergence along a rear-flank gust front for a considerable time, and dissipates when horizontally displaced from the midlevel updraft. The shortest-lived tornado resides in a similar zone of low-level convergence briefly, but dissipates underneath the location of the midlevel updraft when the updraft becomes tilted and low-level convergence is displaced several kilometers from the tornado. This suggests that a location beneath the midlevel updraft is not always a sufficient condition for tornado maintenance, particularly in the presence of strongly surging outflow. Tornadoes in two other storms persist within a band of low-level convergence in the outflow air (a possible secondary rear-flank gust front), suggesting that tornado maintenance can occur away from the main boundary separating the outflow air and the ambient environment.

In at least one case, tilting of horizontal vorticity occurs near the tornado along the secondary gust front, as evidenced by three-dimensional vortex line arching. This observation suggests that a relatively cold secondary rear-flank downdraft may assist with tornado maintenance through the baroclinic generation and tilting of horizontal vorticity, despite the fact that parcels composing them would be more negatively buoyant than the preceding outflow air.

Full access
Karen Kosiba
,
Joshua Wurman
,
Yvette Richardson
,
Paul Markowski
,
Paul Robinson
, and
James Marquis

Abstract

The genesis of a strong and long-lived tornado observed during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) in Goshen County, Wyoming, on 5 June 2009 is studied. Mobile radar, mobile mesonet, rawinsonde, and photographic data are used to produce an integrated analysis of the evolution of the wind, precipitation, and thermodynamic fields in the parent supercell to deduce the processes that resulted in tornadogenesis. Several minutes prior to tornadogenesis, the rear-flank downdraft intensifies, and a secondary rear-flank downdraft forms and cyclonically wraps around the developing tornado. Kinematic and thermodynamic analyses suggest that horizontal vorticity created in the forward flank and hook echo is tilted and then stretched near the developing tornado. Tilting and stretching are enhanced in the developing low-level circulation as the secondary rear-flank downdraft develops, intensifies, and wraps around the circulation center. Shortly thereafter, the tornado forms. Tornadogenesis does not proceed steadily. Strengthening, weakening, and renewed intensification of the tornado are documented in photographic, reflectivity, Doppler velocity, and dual-Doppler fields and are associated with, and shortly follow, changes in the secondary rear-flank downdraft, convergence, location of the vortex relative to the updraft/downdraft couplet, tilting and stretching near and in the developing tornado, and the evolution of total circulation.

Full access
James Marquis
,
Yvette Richardson
,
Paul Markowski
,
David Dowell
,
Joshua Wurman
,
Karen Kosiba
,
Paul Robinson
, and
Glen Romine

Abstract

High-resolution Doppler radar velocities and in situ surface observations collected in a tornadic supercell on 5 June 2009 during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) are assimilated into a simulated convective storm using an ensemble Kalman filter (EnKF). A series of EnKF experiments using a 1-km horizontal model grid spacing demonstrates the sensitivity of the cold pool and kinematic structure of the storm to the assimilation of these observations and to different model microphysics parameterizations. An experiment is performed using a finer grid spacing (500 m) and the most optimal data assimilation and model configurations from the sensitivity tests to produce a realistically evolving storm. Analyses from this experiment are verified against dual-Doppler and in situ observations and are evaluated for their potential to confidently evaluate mesocyclone-scale processes in the storm using trajectory analysis and calculations of Lagrangian vorticity budgets. In Part II of this study, these analyses will be further evaluated to learn the roles that mesocyclone-scale processes play in tornado formation, maintenance, and decay. The coldness of the simulated low-level outflow is generally insensitive to the choice of certain microphysical parameterizations, likely owing to the vast quantity of kinematic and in situ thermodynamic observations assimilated. The three-dimensional EnKF wind fields and parcel trajectories resemble those retrieved from dual-Doppler observations within the storm, suggesting that realistic four-dimensional mesocyclone-scale processes are captured. However, potential errors are found in trajectories and Lagrangian three-dimensional vorticity budget calculations performed within the mesocyclone that may be due to the coarse (2 min) temporal resolution of the analyses. Therefore, caution must be exercised when interpreting trajectories in this area of the storm.

Full access
Erica K. Dolinar
,
James R. Campbell
,
Jared W. Marquis
,
Anne E. Garnier
, and
Bryan M. Karpowicz

Abstract

Satellite-based measurements of global ice cloud microphysical properties are sampled to develop a novel set of physical parameterizations, relating to cloud layer temperature and effective diameter De , that can be implemented for two separate applications: in numerical weather prediction models and lidar-based cloud radiative forcing studies. Ice cloud optical properties (i.e., spectral scattering and absorption) are estimated based on the effective size and habit mixture of the cloud particles. Historically, the ice cloud De has been parameterized from aircraft in situ measurements. However, aircraft-based parameterizations are opportunistic in that they only represent specific types of clouds (e.g., convective anvil, tropopause-topped cirrus) in the regions in which they were sampled and, in some cases, are limited in fully resolving the entire vertical cloud layer. Breaking away from the aircraft-based parameterization paradigm, this study is the first of its kind to attempt a parameterization of De as a function of temperature, ice water content (IWC), and lidar-derived extinction from satellite-based global oceanic measurements of ice clouds. Data from both active and passive remote sensing sensors from two of NASA’s A-Train satellites, CloudSat and CALIPSO, are collected to guide development of globally robust parameterizations of all ice cloud types and one exclusively for cirrus clouds.

Significance Statement

We derived unique parameterizations of ice crystal effective size from global satellite measurements in an effort to more robustly and consistently represent ice clouds in numerical models for weather forecasting and climate energy balance studies. Based on our results, effective ice crystal size is easily solved based on temperature and visible cloud translucence. By knowing the size of the ice crystals, we can then estimate cloud scattering and absorption. In comparison with aircraft-based parameterizations, the satellite data reveal that ice crystal effective sizes are much smaller, on global average, for ice clouds occurring in relatively warm layers (>230 K), indicating that many ice clouds are more reflective than previously believed.

Restricted access
James N. Marquis
,
Adam C. Varble
,
Paul Robinson
,
T. Connor Nelson
, and
Katja Friedrich

Abstract

Data from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of (i) the mesoscale and boundary layer flow, and (ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms. The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary, or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3–5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1–3 km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment.

Open access
James Marquis
,
Yvette Richardson
,
Paul Markowski
,
Joshua Wurman
,
Karen Kosiba
, and
Paul Robinson

Abstract

Storm-scale and mesocyclone-scale processes occurring contemporaneously with a tornado in the Goshen County, Wyoming, supercell observed on 5 June 2009 during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) are examined using ensemble analyses produced by assimilating mobile radar and in situ observations into a high-resolution convection-resolving model. This paper focuses on understanding the evolution of the vertical structure of the storm, the outflow buoyancy, and processes affecting the vertical vorticity and circulation within the mesocyclone that correspond to changes in observed tornado intensity.

Tornadogenesis occurs when the low-level mesocyclone is least negatively buoyant relative to the environment, possesses its largest circulation, and is collocated with the largest azimuthally averaged convergence during the analysis period. The average buoyancy, circulation, and convergence within the near-surface mesocyclone (on spatial scales resolved by the model) all decrease as the tornado intensifies and matures. The tornado and its parent low-level mesocyclone both dissipate surrounded by a weakening rear-flank downdraft. The decreasing buoyancy of parcels within the low-level mesocyclone may partly be responsible for the weakening of the updraft surrounding the tornado and decoupling of the mid- and low-level circulation. Although the supply of horizontal vorticity generated in the forward flank of the storm increases throughout the life cycle of the tornado, it is presumably less easily tilted and stretched on the mesocyclone-scale during tornado maturity owing to the disruption of the low-level updraft/downdraft structure. Changes in radar-measured tornado intensity lag those of ensemble Kalman filter (EnKF) mesocyclone vorticity and circulation.

Full access