Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: James R. Salmon x
  • Refine by Access: All Content x
Clear All Modify Search
Peter A. Taylor
and
James R. Salmon

Abstract

Wakes behind 2D fences and 3D obstacles are reviewed with special emphasis on reduced mean wind speeds and sheltering effects. Based partly on Perera's study of wakes behind 2D fences, and assuming a Gaussian spread for wakes behind 3D obstacles, a shelter model is proposed and tested. The shelter produced depends on a wake moment coefficient k which appears to be significantly less for 3D obstacles than for 2D fences. The model provides a simple basis on which to “correct” anemometer data for sheltering effects associated with upstream obstacles. Such corrections are an important step in the generation of improved surface wind climatologies and wind atlases.

Full access
Andrew J. Tanentzap
,
Peter A. Taylor
,
Norman D. Yan
, and
James R. Salmon

Abstract

A 34% reduction in 10-m wind speeds at Sudbury Airport in Ontario, Canada, over the period 1975–95 appears to be a result of significant changes in the surface roughness of the surrounding area that are due to land restoration and reforestation following historical environmental damage caused by high sulfur dioxide and other industrial emissions. Neither 850-hPa winds extracted from the NCEP–NCAR reanalysis database nor wind measurements at meteorological stations 200 km to the north and 120 km to the east of Sudbury show the same decrease. To assess these changes in observed wind speed quantitatively, geostrophic drag laws were employed to illustrate potential changes in near-surface wind speeds in areas surrounding the airport. A model of the internal boundary layer flow adjustment associated with changes in the surface roughness length between the surroundings and the grass or snow surface of the airport was then applied to compute expected annual average wind speeds at the airport site itself. The estimates obtained with this relatively simple procedure match the observations and confirm that reforestation is likely the major cause of the reduced wind speeds. This finding bears economic, social, and ecological importance, because it will influence wind energy potential, wind loads on structures, wind chill, and home heating costs through to the biology of small- to medium-sized lakes.

Full access