Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: James W. Elkins x
  • Refine by Access: All Content x
Clear All Modify Search
Fred L. Moore
,
Eric A. Ray
,
Karen H. Rosenlof
,
James W. Elkins
,
Pieter Tans
,
Anna Karion
, and
Colm Sweeney

A stratospheric trace gas measurement program using balloon-based sonde and AirCore sampler techniques is proposed as a way to monitor the strength of the stratospheric mean meridional or Brewer–Dobson circulation. Modeling work predicts a strengthening of the Brewer–Dobson circulation in response to increasing greenhouse gas concentrations; such a change will likely impact tropospheric climate. Because the strength of the Brewer–Dobson circulation is an unmeasureable quantity, trace gas measurements are used to infer characteristics of the circulation. At present, stratospheric trace gas measurements are sporadic in time and/or place, primarily associated with localized aircraft or balloon campaigns or relatively short-lived satellite instruments. This program would consist of regular trace gas profile measurements taken at multiple latitudes covering tropical, midlatitude, and polar regimes. The program would make use of the relatively low-cost AirCore and sonde techniques, allowing more frequent measurements given the significantly lower cost than with current techniques. The program will provide a means of monitoring changes in the strength and redistribution of the stratospheric circulation. The goals are to monitor the strength of the Brewer–Dobson circulation and to improve understanding of the reasons for stratospheric circulation changes, ultimately resulting in more realistic model predictions of climate change for the coming decades.

Full access
Eric J. Jensen
,
Leonhard Pfister
,
David E. Jordan
,
Thaopaul V. Bui
,
Rei Ueyama
,
Hanwant B. Singh
,
Troy D. Thornberry
,
Andrew W. Rollins
,
Ru-Shan Gao
,
David W. Fahey
,
Karen H. Rosenlof
,
James W. Elkins
,
Glenn S. Diskin
,
Joshua P. DiGangi
,
R. Paul Lawson
,
Sarah Woods
,
Elliot L. Atlas
,
Maria A. Navarro Rodriguez
,
Steven C. Wofsy
,
Jasna Pittman
,
Charles G. Bardeen
,
Owen B. Toon
,
Bruce C. Kindel
,
Paul A. Newman
,
Matthew J. McGill
,
Dennis L. Hlavka
,
Leslie R. Lait
,
Mark R. Schoeberl
,
John W. Bergman
,
Henry B. Selkirk
,
M. Joan Alexander
,
Ji-Eun Kim
,
Boon H. Lim
,
Jochen Stutz
, and
Klaus Pfeilsticker

Abstract

The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).

Full access