Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Jan O. Haerter x
  • Refine by Access: All Content x
Clear All Modify Search
Stefan Hagemann, Cui Chen, Jan O. Haerter, Jens Heinke, Dieter Gerten, and Claudio Piani


Future climate model scenarios depend crucially on the models’ adequate representation of the hydrological cycle. Within the EU integrated project Water and Global Change (WATCH), special care is taken to use state-of-the-art climate model output for impacts assessments with a suite of hydrological models. This coupling is expected to lead to a better assessment of changes in the hydrological cycle. However, given the systematic errors of climate models, their output is often not directly applicable as input for hydrological models. Thus, the methodology of a statistical bias correction has been developed for correcting climate model output to produce long-term time series with a statistical intensity distribution close to that of the observations. As observations, global reanalyzed daily data of precipitation and temperature were used that were obtained in the WATCH project. Daily time series from three GCMs (GCMs) ECHAM5/Max Planck Institute Ocean Model (MPI-OM), Centre National de Recherches Météorologiques Coupled GCM, version 3 (CNRM-CM3), and the atmospheric component of the L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4) coupled model (called LMDZ-4)—were bias corrected. After the validation of the bias-corrected data, the original and the bias-corrected GCM data were used to force two global hydrology models (GHMs): 1) the hydrological model of the Max Planck Institute for Meteorology (MPI-HM) consisting of the simplified land surface (SL) scheme and the hydrological discharge (HD) model, and 2) the dynamic global vegetation model called LPJmL. The impact of the bias correction on the projected simulated hydrological changes is analyzed, and the simulation results of the two GHMs are compared. Here, the projected changes in 2071–2100 are considered relative to 1961–90. It is shown for both GHMs that the usage of bias-corrected GCM data leads to an improved simulation of river runoff for most catchments. But it is also found that the bias correction has an impact on the climate change signal for specific locations and months, thereby identifying another level of uncertainty in the modeling chain from the GCM to the simulated changes calculated by the GHMs. This uncertainty may be of the same order of magnitude as uncertainty related to the choice of the GCM or GHM. Note that this uncertainty is primarily attached to the GCM and only becomes obvious by applying the statistical bias correction methodology.

Full access