Search Results
You are looking at 1 - 10 of 20 items for
- Author or Editor: Jan-Huey Chen x
- Refine by Access: All Content x
Abstract
Retrospective seasonal predictions of tropical cyclones (TCs) in the three major ocean basins of the Northern Hemisphere are performed from 1990 to 2010 using the Geophysical Fluid Dynamics Laboratory High-Resolution Atmospheric Model (HiRAM) at 25-km resolution. Atmospheric states are initialized for each forecast, with the sea surface temperature anomaly (SSTA) “persisted” from that at the starting time during the 5-month forecast period (July–November). Using a five-member ensemble, it is shown that the storm counts of both tropical storm (TS) and hurricane categories are highly predictable in the North Atlantic basin during the 21-yr period. The correlations between the 21-yr observed and model predicted storm counts are 0.88 and 0.89 for hurricanes and TSs, respectively. The prediction in the eastern North Pacific is skillful, but it is not as outstanding as that in the North Atlantic. The persistent SSTA assumption appears to be less robust for the western North Pacific, contributing to less skillful predictions in that region. The relative skill in the prediction of storm counts is shown to be consistent with the quality of the predicted large-scale environment in the three major basins. It is shown that intensity distribution of TCs can be captured well by the model if the central sea level pressure is used as the threshold variable instead of the commonly used 10-m wind speed. This demonstrates the feasibility of using the 25-km-resolution HiRAM, a general circulation model designed initially for long-term climate simulations, to study the impacts of climate change on the intensity distribution of TCs.
Abstract
Retrospective seasonal predictions of tropical cyclones (TCs) in the three major ocean basins of the Northern Hemisphere are performed from 1990 to 2010 using the Geophysical Fluid Dynamics Laboratory High-Resolution Atmospheric Model (HiRAM) at 25-km resolution. Atmospheric states are initialized for each forecast, with the sea surface temperature anomaly (SSTA) “persisted” from that at the starting time during the 5-month forecast period (July–November). Using a five-member ensemble, it is shown that the storm counts of both tropical storm (TS) and hurricane categories are highly predictable in the North Atlantic basin during the 21-yr period. The correlations between the 21-yr observed and model predicted storm counts are 0.88 and 0.89 for hurricanes and TSs, respectively. The prediction in the eastern North Pacific is skillful, but it is not as outstanding as that in the North Atlantic. The persistent SSTA assumption appears to be less robust for the western North Pacific, contributing to less skillful predictions in that region. The relative skill in the prediction of storm counts is shown to be consistent with the quality of the predicted large-scale environment in the three major basins. It is shown that intensity distribution of TCs can be captured well by the model if the central sea level pressure is used as the threshold variable instead of the commonly used 10-m wind speed. This demonstrates the feasibility of using the 25-km-resolution HiRAM, a general circulation model designed initially for long-term climate simulations, to study the impacts of climate change on the intensity distribution of TCs.
Abstract
Singular vectors (SVs) are used to study the sensitivity of 2-day forecasts of recurving tropical cyclones (TCs) in the western North Pacific to changes in the initial state. The SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS) for 72 forecasts for 18 TCs in the western North Pacific during 2006. In addition to the linear SV calculation, nonlinear perturbation experiments are also performed in order to examine 1) the similarity between nonlinear and linear perturbation growth and 2) the downstream impacts over the North Pacific and North America that result from changes to the 2-day TC forecast. Both nonrecurving and recurving 2-day storm forecasts are sensitive to changes in the initial state in the near-storm environment (in an annulus approximately 500 km from the storm center). During recurvature, sensitivity develops to the northwest of the storm, usually associated with a trough moving in from the west. These upstream sensitivities can occur as far as 4000 km to the northwest of the storm, over the Asian mainland, which has implications for adaptive observations. Nonlinear perturbation experiments indicate that the linear calculations reflect case-to-case variability in actual nonlinear perturbation growth fairly well, especially when the growth is large. The nonlinear perturbations show that for recurving tropical cyclones, small initial perturbations optimized to change the 2-day TC forecast can grow and propagate downstream quickly, reaching North America in 5 days. The fastest 5-day perturbation growth is associated with recurving storm forecasts that occur when the baroclinic instability over the North Pacific is relatively large. These results suggest that nonlinear forecasts perturbed using TC SVs may have utility for predicting the downstream impact of TC forecast errors over the North Pacific and North America.
Abstract
Singular vectors (SVs) are used to study the sensitivity of 2-day forecasts of recurving tropical cyclones (TCs) in the western North Pacific to changes in the initial state. The SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS) for 72 forecasts for 18 TCs in the western North Pacific during 2006. In addition to the linear SV calculation, nonlinear perturbation experiments are also performed in order to examine 1) the similarity between nonlinear and linear perturbation growth and 2) the downstream impacts over the North Pacific and North America that result from changes to the 2-day TC forecast. Both nonrecurving and recurving 2-day storm forecasts are sensitive to changes in the initial state in the near-storm environment (in an annulus approximately 500 km from the storm center). During recurvature, sensitivity develops to the northwest of the storm, usually associated with a trough moving in from the west. These upstream sensitivities can occur as far as 4000 km to the northwest of the storm, over the Asian mainland, which has implications for adaptive observations. Nonlinear perturbation experiments indicate that the linear calculations reflect case-to-case variability in actual nonlinear perturbation growth fairly well, especially when the growth is large. The nonlinear perturbations show that for recurving tropical cyclones, small initial perturbations optimized to change the 2-day TC forecast can grow and propagate downstream quickly, reaching North America in 5 days. The fastest 5-day perturbation growth is associated with recurving storm forecasts that occur when the baroclinic instability over the North Pacific is relatively large. These results suggest that nonlinear forecasts perturbed using TC SVs may have utility for predicting the downstream impact of TC forecast errors over the North Pacific and North America.
Abstract
The adjoint-derived sensitivity steering vector (ADSSV) has been proposed and applied as a guidance for targeted observation in the field programs for improving tropical cyclone predictability, such as The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC). The ADSSV identifies sensitive areas at the observing time to the steering flow at the verifying time through adjoint calculation. In addition, the ability of the ADSSV to represent signals of influence from synoptic systems such as the midlatitude trough and the subtropical high prior to the recurvature of Typhoon Shanshan (2006) has also been demonstrated.
In this study, the impact of initial perturbations associated with the high or low ADSSV sensitivity on model simulations is investigated by systematically perturbing initial vorticity fields in the case of Shanshan. Results show that experiments with the perturbed initial conditions located in the high ADSSV area (i.e., the midlatitude trough and the subtropical high) lead to more track deflection relative to the unperturbed control run than experiments with perturbations in the low sensitivity area. The evolutions of the deep-layer-mean steering flow and the direction of the ADSSV are compared to provide conceptual interpretation and validation on the physical meaning of the ADSSV. Concerning the results associated with the perturbed regions in high sensitivity regions, the variation of the steering flow within the verifying area due to the initial perturbations is generally consistent with that of the direction of the ADSSV. In addition, the bifurcation between the ADSSV and the steering change becomes larger with the increased integration time. However, the result for the perturbed region in the low-sensitivity region indicates that the steering change does not have good agreement with the ADSSV. The large initial perturbations to the low-sensitivity region may interact with the trough to the north due to the nonlinearity, which may not be accounted for in the ADSSV. Furthermore, the effect of perturbations specifically within the sensitive vertical layers is investigated to validate the vertical structure of the ADSSV. The structure of kinetic energy shows that the perturbation associated with the trough (subtropical high) specifically in the mid-to-upper (mid-to-lower) troposphere evolves similarly to that in the deep-layer troposphere, leading to comparable track changes. A sensitivity test in which perturbations are locally introduced in a higher-sensitivity area is conducted to examine the different impact as compared to that perturbed with the broader synoptic feature.
Abstract
The adjoint-derived sensitivity steering vector (ADSSV) has been proposed and applied as a guidance for targeted observation in the field programs for improving tropical cyclone predictability, such as The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC). The ADSSV identifies sensitive areas at the observing time to the steering flow at the verifying time through adjoint calculation. In addition, the ability of the ADSSV to represent signals of influence from synoptic systems such as the midlatitude trough and the subtropical high prior to the recurvature of Typhoon Shanshan (2006) has also been demonstrated.
In this study, the impact of initial perturbations associated with the high or low ADSSV sensitivity on model simulations is investigated by systematically perturbing initial vorticity fields in the case of Shanshan. Results show that experiments with the perturbed initial conditions located in the high ADSSV area (i.e., the midlatitude trough and the subtropical high) lead to more track deflection relative to the unperturbed control run than experiments with perturbations in the low sensitivity area. The evolutions of the deep-layer-mean steering flow and the direction of the ADSSV are compared to provide conceptual interpretation and validation on the physical meaning of the ADSSV. Concerning the results associated with the perturbed regions in high sensitivity regions, the variation of the steering flow within the verifying area due to the initial perturbations is generally consistent with that of the direction of the ADSSV. In addition, the bifurcation between the ADSSV and the steering change becomes larger with the increased integration time. However, the result for the perturbed region in the low-sensitivity region indicates that the steering change does not have good agreement with the ADSSV. The large initial perturbations to the low-sensitivity region may interact with the trough to the north due to the nonlinearity, which may not be accounted for in the ADSSV. Furthermore, the effect of perturbations specifically within the sensitive vertical layers is investigated to validate the vertical structure of the ADSSV. The structure of kinetic energy shows that the perturbation associated with the trough (subtropical high) specifically in the mid-to-upper (mid-to-lower) troposphere evolves similarly to that in the deep-layer troposphere, leading to comparable track changes. A sensitivity test in which perturbations are locally introduced in a higher-sensitivity area is conducted to examine the different impact as compared to that perturbed with the broader synoptic feature.
Abstract
Targeted observation is one of the most important research and forecasting issues for improving tropical cyclone predictability. A new parameter [i.e., the adjoint-derived sensitivity steering vector (ADSSV)] has been proposed and adopted as one of the targeted observing strategies in the Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). The ADSSV identifies the sensitive areas at the observing time to the steering flow at the verifying time through the adjoint calculation. In this study, the ADSSV is calculated from the nonlinear forecast model of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and its adjoint to interpret the dynamical processes in the interaction between Typhoon Shanshan (2006) and the midlatitude trough. The ADSSV results imply that high-sensitivity regions affecting the motion of Typhoon Shanshan are located at the edge of the subtropical high and the 500-hPa midlatitude trough over northern central China. These ADSSV signals are in very good agreement with the quantitative evaluation based on the potential vorticity (PV) diagnosis. The vertical structure of the ADSSV is also shown for more physical insights into the typhoon–trough interaction. The maximum ADSSV occurs at 800–500 hPa to the southeast of Shanshan (associated with the subtropical high), while distinct ADSSV signals are located upstream of the storm center at about 500–300 hPa (associated with the mid- to upper-tropospheric midlatitude trough). Overall, it is demonstrated that the ADSSV features can well capture the signal of the large-scale trough feature affecting the motion of Shanshan, which can also be well validated from the PV analysis.
Abstract
Targeted observation is one of the most important research and forecasting issues for improving tropical cyclone predictability. A new parameter [i.e., the adjoint-derived sensitivity steering vector (ADSSV)] has been proposed and adopted as one of the targeted observing strategies in the Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). The ADSSV identifies the sensitive areas at the observing time to the steering flow at the verifying time through the adjoint calculation. In this study, the ADSSV is calculated from the nonlinear forecast model of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and its adjoint to interpret the dynamical processes in the interaction between Typhoon Shanshan (2006) and the midlatitude trough. The ADSSV results imply that high-sensitivity regions affecting the motion of Typhoon Shanshan are located at the edge of the subtropical high and the 500-hPa midlatitude trough over northern central China. These ADSSV signals are in very good agreement with the quantitative evaluation based on the potential vorticity (PV) diagnosis. The vertical structure of the ADSSV is also shown for more physical insights into the typhoon–trough interaction. The maximum ADSSV occurs at 800–500 hPa to the southeast of Shanshan (associated with the subtropical high), while distinct ADSSV signals are located upstream of the storm center at about 500–300 hPa (associated with the mid- to upper-tropospheric midlatitude trough). Overall, it is demonstrated that the ADSSV features can well capture the signal of the large-scale trough feature affecting the motion of Shanshan, which can also be well validated from the PV analysis.
Abstract
The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a new variable-resolution global model with the ability to represent convective-scale features that serves as a prototype of the Next Generation Global Prediction System (NGGPS). The goal of this prediction system is to maintain the skill in large-scale features while simultaneously improving the prediction skill of convectively driven mesoscale phenomena. This paper demonstrates the new capability of this model in convective-scale prediction relative to the current operational Global Forecast System (GFS). This model uses the stretched-grid functionality of the Finite-Volume Cubed-Sphere Dynamical Core (FV3) to refine the global 13-km uniform-resolution model down to 4-km convection-permitting resolution over the contiguous United States (CONUS), and implements the GFDL single-moment 6-category cloud microphysics to improve the representation of moist processes. Statistics gathered from two years of simulations by the GFS and select configurations of the FV3-based model are carefully examined. The variable-resolution FV3-based model is shown to possess global forecast skill comparable with that of the operational GFS while quantitatively improving skill and better representing the diurnal cycle within the high-resolution area compared to the uniform mesh simulations. Forecasts of the occurrence of extreme precipitation rates over the southern Great Plains are also shown to improve with the variable-resolution model. Case studies are provided of a squall line and a hurricane to demonstrate the effectiveness of the variable-resolution model to simulate convective-scale phenomena.
Abstract
The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a new variable-resolution global model with the ability to represent convective-scale features that serves as a prototype of the Next Generation Global Prediction System (NGGPS). The goal of this prediction system is to maintain the skill in large-scale features while simultaneously improving the prediction skill of convectively driven mesoscale phenomena. This paper demonstrates the new capability of this model in convective-scale prediction relative to the current operational Global Forecast System (GFS). This model uses the stretched-grid functionality of the Finite-Volume Cubed-Sphere Dynamical Core (FV3) to refine the global 13-km uniform-resolution model down to 4-km convection-permitting resolution over the contiguous United States (CONUS), and implements the GFDL single-moment 6-category cloud microphysics to improve the representation of moist processes. Statistics gathered from two years of simulations by the GFS and select configurations of the FV3-based model are carefully examined. The variable-resolution FV3-based model is shown to possess global forecast skill comparable with that of the operational GFS while quantitatively improving skill and better representing the diurnal cycle within the high-resolution area compared to the uniform mesh simulations. Forecasts of the occurrence of extreme precipitation rates over the southern Great Plains are also shown to improve with the variable-resolution model. Case studies are provided of a squall line and a hurricane to demonstrate the effectiveness of the variable-resolution model to simulate convective-scale phenomena.
Abstract
A new global model using the GFDL nonhydrostatic Finite-Volume Cubed-Sphere Dynamical Core (FV3) coupled to physical parameterizations from the National Centers for Environmental Prediction’s Global Forecast System (NCEP/GFS) was built at GFDL, named fvGFS. The modern dynamical core, FV3, has been selected for the National Oceanic and Atmospheric Administration’s Next Generation Global Prediction System (NGGPS) due to its accuracy, adaptability, and computational efficiency, which brings a great opportunity for the unification of weather and climate prediction systems. The performance of tropical cyclone (TC) forecasts in the 13-km fvGFS is evaluated globally based on 363 daily cases of 10-day forecasts in 2015. Track and intensity errors of TCs in fvGFS are compared to those in the operational GFS. The fvGFS outperforms the GFS in TC intensity prediction for all basins. For TC track prediction, the fvGFS forecasts are substantially better over the northern Atlantic basin and the northern Pacific Ocean than the GFS forecasts. An updated version of the fvGFS with the GFDL 6-category cloud microphysics scheme is also investigated based on the same 363 cases. With this upgraded microphysics scheme, fvGFS shows much improvement in TC intensity prediction over the operational GFS. Besides track and intensity forecasts, the performance of TC genesis forecast is also compared between the fvGFS and operational GFS. In addition to evaluating the hit/false alarm ratios, a novel method is developed to investigate the lengths of TC genesis lead times in the forecasts. Both versions of fvGFS show higher hit ratios, lower false alarm ratios, and longer genesis lead times than those of the GFS model in most of the TC basins.
Abstract
A new global model using the GFDL nonhydrostatic Finite-Volume Cubed-Sphere Dynamical Core (FV3) coupled to physical parameterizations from the National Centers for Environmental Prediction’s Global Forecast System (NCEP/GFS) was built at GFDL, named fvGFS. The modern dynamical core, FV3, has been selected for the National Oceanic and Atmospheric Administration’s Next Generation Global Prediction System (NGGPS) due to its accuracy, adaptability, and computational efficiency, which brings a great opportunity for the unification of weather and climate prediction systems. The performance of tropical cyclone (TC) forecasts in the 13-km fvGFS is evaluated globally based on 363 daily cases of 10-day forecasts in 2015. Track and intensity errors of TCs in fvGFS are compared to those in the operational GFS. The fvGFS outperforms the GFS in TC intensity prediction for all basins. For TC track prediction, the fvGFS forecasts are substantially better over the northern Atlantic basin and the northern Pacific Ocean than the GFS forecasts. An updated version of the fvGFS with the GFDL 6-category cloud microphysics scheme is also investigated based on the same 363 cases. With this upgraded microphysics scheme, fvGFS shows much improvement in TC intensity prediction over the operational GFS. Besides track and intensity forecasts, the performance of TC genesis forecast is also compared between the fvGFS and operational GFS. In addition to evaluating the hit/false alarm ratios, a novel method is developed to investigate the lengths of TC genesis lead times in the forecasts. Both versions of fvGFS show higher hit ratios, lower false alarm ratios, and longer genesis lead times than those of the GFS model in most of the TC basins.
Abstract
A heavy rainfall event associated with the passage of Tropical Storm Rachel (1999) over southern Taiwan was studied in which a conceptual model was proposed. In the model, Tropical Storm Paul (1999) plays an important role in impeding the movement of Rachel, thus becoming one of the key factors in enhancing the rainfall amount in southern Taiwan. To further quantify the above concept, a mesoscale numerical model is used to evaluate the influence of Paul on the simulated rainfall associated with Rachel near Taiwan. Sensitivity experiments are performed by removing the circulation of Paul, and/or the large-scale monsoon trough system, where Paul is imbedded. The potential vorticity diagnosis shows that the movement of Rachel is indeed affected by the presence of Paul. Nevertheless, a more detailed analysis shows that it is the presence of the entire monsoon trough that impedes the movement of Rachel and steers the storm toward southwestern Taiwan especially before its landfall. In all, these results generally support the conceptual model with regard to the heavy rainfall mechanism proposed in a previous study. Moreover, this study further points out that it is the circulation associated with both Paul and the entire monsoon trough that affects the movement of Rachel. In addition, the analyses based on the no-terrain simulation depict the relationships among the moisture-rich air from the South China Sea associated with Rachel, relatively dry air from South China, and the mechanism of forming a warm and dry region to the eastern side of the Taiwan terrain, which greatly influences the heavy rainfall distribution in the event.
Abstract
A heavy rainfall event associated with the passage of Tropical Storm Rachel (1999) over southern Taiwan was studied in which a conceptual model was proposed. In the model, Tropical Storm Paul (1999) plays an important role in impeding the movement of Rachel, thus becoming one of the key factors in enhancing the rainfall amount in southern Taiwan. To further quantify the above concept, a mesoscale numerical model is used to evaluate the influence of Paul on the simulated rainfall associated with Rachel near Taiwan. Sensitivity experiments are performed by removing the circulation of Paul, and/or the large-scale monsoon trough system, where Paul is imbedded. The potential vorticity diagnosis shows that the movement of Rachel is indeed affected by the presence of Paul. Nevertheless, a more detailed analysis shows that it is the presence of the entire monsoon trough that impedes the movement of Rachel and steers the storm toward southwestern Taiwan especially before its landfall. In all, these results generally support the conceptual model with regard to the heavy rainfall mechanism proposed in a previous study. Moreover, this study further points out that it is the circulation associated with both Paul and the entire monsoon trough that affects the movement of Rachel. In addition, the analyses based on the no-terrain simulation depict the relationships among the moisture-rich air from the South China Sea associated with Rachel, relatively dry air from South China, and the mechanism of forming a warm and dry region to the eastern side of the Taiwan terrain, which greatly influences the heavy rainfall distribution in the event.
Abstract
Since 2003, a field program has been conducted under the name of Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). As the name DOTSTAR suggests, targeted observation is one of its key objectives. The prerequisite for designing the observing strategy is to identify the sensitive areas, which would exert great influence on the results of numerical forecast or the extent of the forecast error.
In addition to various sensitivity products already adopted in DOTSTAR, a new way to identify the sensitive area for the targeted observation of tropical cyclones based on the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) is proposed in this paper. By appropriately defining the response functions to represent the steering flow at the verifying time, a simple vector, adjoint-derived sensitivity steering vector (ADSSV), has been designed to demonstrate the sensitivity locations and the critical direction of typhoon steering flow at the observing time. Typhoons Meari and Mindulle of 2004 have been selected to show the use of ADSSV. In general, unique sensitive areas 36 h after the observing time are obtained.
The proposed ADSSV method is also used to demonstrate the signal of the binary interaction between Typhoons Fungwong and Fengshen (2002). The ADSSV is implemented and examined in the field project, DOTSTAR, in 2005 as well as in the surveillance mission for Atlantic hurricanes conducted by the Hurricane Research Division. Further analysis of the results will be vital to validate the use of ADSSV.
Abstract
Since 2003, a field program has been conducted under the name of Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). As the name DOTSTAR suggests, targeted observation is one of its key objectives. The prerequisite for designing the observing strategy is to identify the sensitive areas, which would exert great influence on the results of numerical forecast or the extent of the forecast error.
In addition to various sensitivity products already adopted in DOTSTAR, a new way to identify the sensitive area for the targeted observation of tropical cyclones based on the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) is proposed in this paper. By appropriately defining the response functions to represent the steering flow at the verifying time, a simple vector, adjoint-derived sensitivity steering vector (ADSSV), has been designed to demonstrate the sensitivity locations and the critical direction of typhoon steering flow at the observing time. Typhoons Meari and Mindulle of 2004 have been selected to show the use of ADSSV. In general, unique sensitive areas 36 h after the observing time are obtained.
The proposed ADSSV method is also used to demonstrate the signal of the binary interaction between Typhoons Fungwong and Fengshen (2002). The ADSSV is implemented and examined in the field project, DOTSTAR, in 2005 as well as in the surveillance mission for Atlantic hurricanes conducted by the Hurricane Research Division. Further analysis of the results will be vital to validate the use of ADSSV.
Abstract
This paper describes a forecasting configuration of the Geophysical Fluid Dynamics Laboratory (GFDL) High-resolution Atmospheric Model (HiRAM). HiRAM represents an early attempt in unifying, within a global modeling framework, the capabilities of GFDL’s low-resolution climate models for Intergovernmental Panel on Climate Change (IPCC) type climate change assessments and high-resolution limited-area models for hurricane predictions. In this study, the potential of HiRAM as a forecasting tool is investigated by applying the model to the near-term and intraseasonal hindcasting of tropical cyclones (TCs) in the Atlantic basin from 2006 to 2009. Results demonstrate that HiRAM provides skillful near-term forecasts of TC track and intensity relative to their respective benchmarks from t = 48 h through t = 144 h. At the intraseasonal time scale, a simple HiRAM ensemble provides skillful forecasts of 21-day Atlantic basin TC activity at a 2-day lead time. It should be noted that the methodology used to produce these hindcasts is applicable in a real-time forecasting scenario. While the initial experimental results appear promising, the HiRAM forecasting system requires various improvements in order to be useful in an operational setting. These modifications are currently under development and include a data assimilation system for forecast initialization, increased horizontal resolution to better resolve the vortex structure, 3D ocean model coupling, and wave model coupling. An overview of these ongoing developments is provided, and the specifics of each will be described in subsequent papers.
Abstract
This paper describes a forecasting configuration of the Geophysical Fluid Dynamics Laboratory (GFDL) High-resolution Atmospheric Model (HiRAM). HiRAM represents an early attempt in unifying, within a global modeling framework, the capabilities of GFDL’s low-resolution climate models for Intergovernmental Panel on Climate Change (IPCC) type climate change assessments and high-resolution limited-area models for hurricane predictions. In this study, the potential of HiRAM as a forecasting tool is investigated by applying the model to the near-term and intraseasonal hindcasting of tropical cyclones (TCs) in the Atlantic basin from 2006 to 2009. Results demonstrate that HiRAM provides skillful near-term forecasts of TC track and intensity relative to their respective benchmarks from t = 48 h through t = 144 h. At the intraseasonal time scale, a simple HiRAM ensemble provides skillful forecasts of 21-day Atlantic basin TC activity at a 2-day lead time. It should be noted that the methodology used to produce these hindcasts is applicable in a real-time forecasting scenario. While the initial experimental results appear promising, the HiRAM forecasting system requires various improvements in order to be useful in an operational setting. These modifications are currently under development and include a data assimilation system for forecast initialization, increased horizontal resolution to better resolve the vortex structure, 3D ocean model coupling, and wave model coupling. An overview of these ongoing developments is provided, and the specifics of each will be described in subsequent papers.