Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Janusz Eluszkiewicz x
  • Refine by Access: All Content x
Clear All Modify Search
R. Alan Plumb
and
Janusz Eluszkiewicz

Abstract

Recent advances in our understanding of the dynamics of the stratospheric circulation have led to the concepts of “downward control” and the “extratropical pump.” However, under the assumptions on which these concepts are based, midlatitude wave driving cannot explain the fact that mean stratospheric upwelling is located in the Tropics. Nevertheless, using a nonlinear two-dimensional model it is shown here that a steady and (in the lower stratosphere) linear circulation with a qualitatively reasonable upwelling can be produced, provided the wave drag extends to within about 20° of the equator. In a linear analysis of the problem, it is shown that the effects of weak model viscosity (some 50 times weaker than thermal relaxation) are crucial in permitting flow across angular momentum contours within a tropical boundary layer whose width is of order L R P 1/4, where L R is the equatorial Rossby radius and P a Prandtl number (the ratio of radiative to viscous relaxation times). Provided the wave drag extends into this boundary layer, upwelling is distributed across the Tropics. These considerations put limits on the generality of the concepts of the extratropical pump and downward control and, inter alia, open the possibility that diabatic heating alone can drive a meridional circulation within the Tropics. On the basis of simple representations of wave drag and diabatic heating in a nonlinear, zonally symmetric model, it is found that, although driving by wave drag is the dominant mechanism, stratospheric (and perhaps tropospheric) heating may make a significant contribution to the net upwelling and may help explain its structure. Just what, in reality, might play a role analogous to that of viscosity in the model is an open question.

Full access
Thomas Nehrkorn
,
John Henderson
,
Mark Leidner
,
Marikate Mountain
,
Janusz Eluszkiewicz
,
Kathryn McKain
, and
Steven Wofsy

Abstract

A recent National Research Council report highlighted the potential utility of atmospheric observations and models for detecting trends in concentrated emissions from localized regions, such as urban areas. The Salt Lake City (SLC), Utah, area was chosen for a pilot study to determine the feasibility of using ground-based sensors to identify trends in anthropogenic urban emissions over a range of time scales (from days to years). The Weather Research and Forecasting model (WRF) was combined with a Lagrangian particle dispersion model and an emission inventory to model carbon dioxide (CO2) concentrations that can be compared with in situ measurements. An accurate representation of atmospheric transport requires a faithful modeling of the meteorological conditions. This study examines in detail the ability of different configurations of WRF to reproduce the observed local and mesoscale circulations, and the diurnal evolution of the planetary boundary layer (PBL) in the SLC area. Observations from the Vertical Transport and Mixing field experiment in 2000 were used to examine the sensitivity of WRF results to changes in the PBL parameterization and to the inclusion of an urban canopy model (UCM). Results show that for urban locations there is a clear benefit from parameterizing the urban canopy for simulation of the PBL and near-surface conditions, particularly for temperature evolution at night. Simulation of near-surface CO2 concentrations for a 2-week period in October 2006 showed that running WRF at high resolution (1.33 km) and with a UCM also improves the simulation of observed increases in CO2 during the early evening.

Full access
Janusz Eluszkiewicz
,
Richard S. Hemler
,
Jerry D. Mahlman
,
Lori Bruhwiler
, and
Lawrence L. Takacs

Abstract

The age of air has recently emerged as a diagnostic of atmospheric transport unaffected by chemical parameterizations, and the features in the age distributions computed in models have been interpreted in terms of the models’ large-scale circulation field. This study shows, however, that in addition to the simulated large-scale circulation, three-dimensional age calculations can also be affected by the choice of advection scheme employed in solving the tracer continuity equation. Specifically, using the 3.0° latitude × 3.6° longitude and 40 vertical level version of the Geophysical Fluid Dynamics Laboratory SKYHI GCM and six online transport schemes ranging from Eulerian through semi-Lagrangian to fully Lagrangian, it will be demonstrated that the oldest ages are obtained using the nondiffusive centered-difference schemes while the youngest ages are computed with a semi-Lagrangian transport (SLT) scheme. The centered-difference schemes are capable of producing ages older than 10 years in the mesosphere, thus eliminating the “young bias” found in previous age-of-air calculations.

At this stage, only limited intuitive explanations can be advanced for this sensitivity of age-of-air calculations to the choice of advection scheme. In particular, age distributions computed online with the National Center for Atmospheric Research Community Climate Model (MACCM3) using different varieties of the SLT scheme are substantially older than the SKYHI SLT distribution. The different varieties, including a noninterpolating-in-the-vertical version (which is essentially centered-difference in the vertical), also produce a narrower range of age distributions than the suite of advection schemes employed in the SKYHI model. While additional MACCM3 experiments with a wider range of schemes would be necessary to provide more definitive insights, the older and less variable MACCM3 age distributions can plausibly be interpreted as being due to the semi-implicit semi-Lagrangian dynamics employed in the MACCM3. This type of dynamical core (employed with a 60-min time step) is likely to reduce SLT’s interpolation errors that are compounded by the short-term variability characteristic of the explicit centered-difference dynamics employed in the SKYHI model (time step of 3 min). In the extreme case of a very slowly varying circulation, the choice of advection scheme has no effect on two-dimensional (latitude– height) age-of-air calculations, owing to the smooth nature of the transport circulation in 2D models.

These results suggest that nondiffusive schemes may be the preferred choice for multiyear simulations of tracers not overly sensitive to the requirement of monotonicity (this category includes many greenhouse gases). At the same time, age-of-air calculations offer a simple quantitative diagnostic of a scheme’s long-term diffusive properties and may help in the evaluation of dynamical cores in multiyear integrations. On the other hand, the sensitivity of the computed ages to the model numerics calls for caution in using age of air as a diagnostic of a GCM’s large-scale circulation field.

Full access
Jennifer Hegarty
,
Roland R. Draxler
,
Ariel F. Stein
,
Jerome Brioude
,
Marikate Mountain
,
Janusz Eluszkiewicz
,
Thomas Nehrkorn
,
Fong Ngan
, and
Arlyn Andrews

Abstract

Three widely used Lagrangian particle dispersion models (LPDMs)—the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), Stochastic Time-Inverted Lagrangian Transport (STILT), and Flexible Particle (FLEXPART) models—are evaluated with measurements from the controlled tracer-release experiments Cross-Appalachian Tracer Experiment (CAPTEX) and Across North America Tracer Experiment (ANATEX). The LPDMs are run forward in time driven by identical meteorological inputs from the North American Regional Reanalysis (NARR) and several configurations of the Weather Research and Forecasting (WRF) model, and the simulations of tracer concentrations are evaluated against the measurements with a ranking procedure derived from the combination of four statistical parameters. The statistical evaluation reveals that all three LPDMs have comparable skill in simulating the tracer plumes when driven by the same meteorological inputs, indicating that the differences in their formulations play a secondary role. Simulations with HYSPLIT and STILT demonstrate the benefit of using customized hourly WRF fields with 10-km horizontal grid spacing over the use of 3-hourly NARR fields with 32-km horizontal grid spacing. All three LPDMs perform better when the WRF wind fields in the planetary boundary layer are nudged to NARR, with FLEXPART benefitting the most. Case studies indicate that the nudging corrects an overestimate in plume transport speed possibly caused by a positive bias in WRF wind speeds near the surface. All three LPDMs also benefit from the use of time-averaged velocity and convective mass flux fields generated by WRF, but the impact on HYSPLIT and STILT is much greater than on FLEXPART. STILT backward runs perform as well as their forward counterparts, demonstrating this model’s reversibility and its suitability for application to inverse flux estimates.

Full access
Janusz Eluszkiewicz
,
David Crisp
,
R. G. Grainger
,
Alyn Lambert
,
A. E. Roche
,
J. B. Kumer
, and
J. L. Mergenthaler

Abstract

The simultaneous measurements of temperature, aerosol extinction, and concentrations of radiatively active gases by several instruments aboard the Upper Atmosphere Research Satellite permit an assessment of the uncertainties in the diagnosed stratospheric heating rates and in the resulting residual circulation. In this paper, measurements taken by the Cryogenic Limb Array Etalon Spectrometer (CLAES) are used to compute the circulation and to compare it against values obtained previously from the measurements obtained by the Microwave Limb Sounder (MLS). There is a broad agreement between the two sets of calculations and known biases in either CLAES or MLS ozone and temperature measurements are found to be responsible for the areas of disagreement. The inclusion of aerosols has improved the estimates of the residual circulation in the lower stratosphere during the 1992–93 period covered by CLAES. Present estimates of the aerosol heating are significantly different from those found in other studies, probably as a result of differences in the treatment of tropospheric clouds and in the adopted vertical profiles of aerosol extinction. Moreover, a large uncertainty in these estimates is caused by the uncertainties in the assumed refractive indices for sulfuric acid solutions.

Full access
Janusz Eluszkiewicz
,
David Crisp
,
Richard Zurek
,
Lee Elson
,
Evan Fishbein
,
Lucien Froidevaux
,
Joe Waters
,
R.G. Grainger
,
Alyn Lambert
,
Robert Harwood
, and
Gordon Peckham

Abstract

Results for the residual circulation in the stratosphere and lower mesosphere between September 1991 and August 1994 are reported. This circulation is diagnosed by applying an accurate radiative transfer code to temperature, ozone, and water vapor measurements acquired by the Microwave Limb Sounder (MLS) onboard the Upper Atmosphere Research Satellite (UARS), augmented by climatological distributions of methane, nitrous oxide, nitrogen dioxide, surface albedo, and cloud cover. The sensitivity of the computed heating rates to the presence of Mt. Pinatubo aerosols is explored by utilizing aerosol properties derived from the measurements obtained by the Improved Stratospheric and Mesospheric Sounder instrument, also onboard UARS. The computed vertical velocities exhibit a Semiannual oscillation (SAO) around the tropical stratopause, with the region of downward velocities reaching maximum spatial extent in February and August. This behavior reflects the semiannual oscillation in temperature and ozone and mimics that seen in past studies of the October 1978–May 1979 period based on data from the Limb Infrared Monitor of the Stratosphere onboard the Nimbus 7 satellite. The SAO vertical velocities are stronger during the northern winter phase, as expected if planetary waves from the winter hemisphere are involved in driving the SAO. A possible quasi-biennial oscillation (QBO) signal extending from the middle into the upper stratosphere is also hinted at, with the equatorial vertical velocities in the region 10–1 hPa significantly smaller (or even negative) in 1993/94 than in 1992/93. Despite the short data record, the authors believe that this pattern reflects a QBO signal rather than a coincidental interannual variability, since the time–height section of vertical velocity at the equator resembles that of the zonal wind. Wintertime high-latitude descent rates are usually greater in the Northern Hemisphere, but they also exhibit significant variability there. In the three northern winters analyzed in this study, strong downward velocities are diagnosed in the lower stratosphere during stratospheric warmings and are associated with enhanced wave forcing (computed as the momentum residual) in the mid- and upper stratosphere. The implications of the computed circulation for the distribution of tracers are illustrated by the example of the “double-peaked” structure in the water vapor distribution measured by MLS.

Full access