Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Jaret W. Rogers x
- Refine by Access: All Content x
Abstract
This comprehensive analysis of convective environments associated with thunderstorms affecting portions of central and southern Arizona during the North American monsoon focuses on both observed soundings and mesoanalysis parameters relative to lightning flash counts and severe-thunderstorm reports. Analysis of observed sounding data from Phoenix and Tucson, Arizona, highlights several moisture and instability parameters exhibiting moderate correlations with 24-h, domain-total lightning and severe thunderstorm counts, with accompanying plots of the precipitable water, surface-based lifted index, and 0–3-km layer mixing ratio highlighting the relationship to the domain-total lightning count. Statistical techniques, including stepwise, multiple linear regression and logistic regression, are applied to sounding and gridded mesoanalysis data to predict the domain-total lightning count and individual gridbox 3-h-long lightning probability, respectively. Applications of these forecast models to an independent dataset from 2013 suggest some utility in probabilistic lightning forecasts from the regression analyses. Implementation of this technique into an operational forecast setting to supplement short-term lightning forecast guidance is discussed and demonstrated. Severe-thunderstorm-report predictive models are found to be less skillful, which may partially be due to substantial population biases noted in storm reports over central and southern Arizona.
Abstract
This comprehensive analysis of convective environments associated with thunderstorms affecting portions of central and southern Arizona during the North American monsoon focuses on both observed soundings and mesoanalysis parameters relative to lightning flash counts and severe-thunderstorm reports. Analysis of observed sounding data from Phoenix and Tucson, Arizona, highlights several moisture and instability parameters exhibiting moderate correlations with 24-h, domain-total lightning and severe thunderstorm counts, with accompanying plots of the precipitable water, surface-based lifted index, and 0–3-km layer mixing ratio highlighting the relationship to the domain-total lightning count. Statistical techniques, including stepwise, multiple linear regression and logistic regression, are applied to sounding and gridded mesoanalysis data to predict the domain-total lightning count and individual gridbox 3-h-long lightning probability, respectively. Applications of these forecast models to an independent dataset from 2013 suggest some utility in probabilistic lightning forecasts from the regression analyses. Implementation of this technique into an operational forecast setting to supplement short-term lightning forecast guidance is discussed and demonstrated. Severe-thunderstorm-report predictive models are found to be less skillful, which may partially be due to substantial population biases noted in storm reports over central and southern Arizona.
Abstract
This paper comprehensively analyzes the synoptic and mesoscale environment associated with North American monsoon–related thunderstorms affecting central and southern Arizona. Analyses of thunderstorm environments are presented using reanalysis data, severe thunderstorm reports, and cloud-to-ground lightning information from 2003 to 2013, which serves as a springboard for lightning-prediction models provided in a companion paper. Spatial and temporal analyses of lightning strikes indicate thunderstorm frequencies maximize between 2100 and 0000 UTC, when the greatest frequencies are concentrated over higher terrain. Severe thunderstorm reports typically occur later in the day (between 2300 and 0100 UTC), while reports are maximized in the Tucson and Phoenix metropolitan areas. Composite analyses of the synoptic-scale patterns associated with severe thunderstorm days and nonthunderstorm days during the summer using the North American Regional Reanalysis dataset are presented. Severe thunderstorm cases tend to be associated with a stronger midlevel anticyclone and deep-layer moisture over portions of the southwestern United States. By September, severe weather patterns tend to associate with a midlevel trough along the Pacific coast. Specific parameters associated with severe thunderstorms are analyzed across the Tucson and Phoenix areas, where severe weather reporting is more consistent. Greater convective available potential energy, low-level lapse rates, and downdraft convective available potential energy are associated with severe thunderstorm (especially severe wind) environments compared to those with nonsevere thunderstorms, while stronger effective bulk wind differences (at least 15–20 kt, where 1 kt = 0.51 m s−1) can be used to distinguish severe hail environments.
Abstract
This paper comprehensively analyzes the synoptic and mesoscale environment associated with North American monsoon–related thunderstorms affecting central and southern Arizona. Analyses of thunderstorm environments are presented using reanalysis data, severe thunderstorm reports, and cloud-to-ground lightning information from 2003 to 2013, which serves as a springboard for lightning-prediction models provided in a companion paper. Spatial and temporal analyses of lightning strikes indicate thunderstorm frequencies maximize between 2100 and 0000 UTC, when the greatest frequencies are concentrated over higher terrain. Severe thunderstorm reports typically occur later in the day (between 2300 and 0100 UTC), while reports are maximized in the Tucson and Phoenix metropolitan areas. Composite analyses of the synoptic-scale patterns associated with severe thunderstorm days and nonthunderstorm days during the summer using the North American Regional Reanalysis dataset are presented. Severe thunderstorm cases tend to be associated with a stronger midlevel anticyclone and deep-layer moisture over portions of the southwestern United States. By September, severe weather patterns tend to associate with a midlevel trough along the Pacific coast. Specific parameters associated with severe thunderstorms are analyzed across the Tucson and Phoenix areas, where severe weather reporting is more consistent. Greater convective available potential energy, low-level lapse rates, and downdraft convective available potential energy are associated with severe thunderstorm (especially severe wind) environments compared to those with nonsevere thunderstorms, while stronger effective bulk wind differences (at least 15–20 kt, where 1 kt = 0.51 m s−1) can be used to distinguish severe hail environments.
Abstract
During the 2014–15 academic year, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service Storm Prediction Center (SPC) and the University of Oklahoma (OU) School of Meteorology jointly created the first SPC-led course at OU focused on connecting traditional theory taught in the academic curriculum with operational meteorology. This class, “Applications of Meteorological Theory to Severe-Thunderstorm Forecasting,” began in 2015. From 2015 through 2017, this spring–semester course has engaged 56 students in theoretical skills and related hands-on weather analysis and forecasting applications, taught by over a dozen meteorologists from the SPC, the NOAA National Severe Storms Laboratory, and the NOAA National Weather Service Forecast Offices. Following introductory material, which addresses many theoretical principles relevant to operational meteorology, numerous presentations and hands-on activities focused on instructors’ areas of expertise are provided to students. Topics include the following: storm-induced perturbation pressure gradients and their enhancement to supercells, tornadogenesis, tropical cyclone tornadoes, severe wind forecasting, surface and upper-air analyses and their interpretation, and forecast decision-making. This collaborative approach has strengthened bonds between meteorologists in operations, research, and academia, while introducing OU meteorology students to the vast array of severe thunderstorm forecast challenges, state-of-the-art operational and research tools, communication of high-impact weather information, and teamwork skills. The methods of collaborative instruction and experiential education have been found to strengthen both operational–academic relationships and students’ appreciation of the intricacies of severe thunderstorm forecasting, as detailed in this article.
Abstract
During the 2014–15 academic year, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service Storm Prediction Center (SPC) and the University of Oklahoma (OU) School of Meteorology jointly created the first SPC-led course at OU focused on connecting traditional theory taught in the academic curriculum with operational meteorology. This class, “Applications of Meteorological Theory to Severe-Thunderstorm Forecasting,” began in 2015. From 2015 through 2017, this spring–semester course has engaged 56 students in theoretical skills and related hands-on weather analysis and forecasting applications, taught by over a dozen meteorologists from the SPC, the NOAA National Severe Storms Laboratory, and the NOAA National Weather Service Forecast Offices. Following introductory material, which addresses many theoretical principles relevant to operational meteorology, numerous presentations and hands-on activities focused on instructors’ areas of expertise are provided to students. Topics include the following: storm-induced perturbation pressure gradients and their enhancement to supercells, tornadogenesis, tropical cyclone tornadoes, severe wind forecasting, surface and upper-air analyses and their interpretation, and forecast decision-making. This collaborative approach has strengthened bonds between meteorologists in operations, research, and academia, while introducing OU meteorology students to the vast array of severe thunderstorm forecast challenges, state-of-the-art operational and research tools, communication of high-impact weather information, and teamwork skills. The methods of collaborative instruction and experiential education have been found to strengthen both operational–academic relationships and students’ appreciation of the intricacies of severe thunderstorm forecasting, as detailed in this article.