Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Jason Brunner x
  • Refine by Access: All Content x
Clear All Modify Search
Richard Dworak, Kristopher Bedka, Jason Brunner, and Wayne Feltz

Abstract

Studies have found that convective storms with overshooting-top (OT) signatures in weather satellite imagery are often associated with hazardous weather, such as heavy rainfall, tornadoes, damaging winds, and large hail. An objective satellite-based OT detection product has been developed using 11-μm infrared window (IRW) channel brightness temperatures (BTs) for the upcoming R series of the Geostationary Operational Environmental Satellite (GOES-R) Advanced Baseline Imager. In this study, this method is applied to GOES-12 IRW data and the OT detections are compared with radar data, severe storm reports, and severe weather warnings over the eastern United States. The goals of this study are to 1) improve forecaster understanding of satellite OT signatures relative to commonly available radar products, 2) assess OT detection product accuracy, and 3) evaluate the utility of an OT detection product for diagnosing hazardous convective storms. The coevolution of radar-derived products and satellite OT signatures indicates that an OT often corresponds with the highest radar echo top and reflectivity maximum aloft. Validation of OT detections relative to composite reflectivity indicates an algorithm false-alarm ratio of 16%, with OTs within the coldest IRW BT range (<200 K) being the most accurate. A significant IRW BT minimum typically present with an OT is more often associated with heavy precipitation than a region with a spatially uniform BT. Severe weather was often associated with OT detections during the warm season (April–September) and over the southern United States. The severe weather to OT relationship increased by 15% when GOES operated in rapid-scan mode, showing the importance of high temporal resolution for observing and detecting rapidly evolving cloud-top features. Comparison of the earliest OT detection associated with a severe weather report showed that 75% of the cases occur before severe weather and that 42% of collocated severe weather reports had either an OT detected before a severe weather warning or no warning issued at all. The relationships between satellite OT signatures, severe weather, and heavy rainfall shown in this paper suggest that 1) when an OT is detected, the particular storm is likely producing heavy rainfall and/or possibly severe weather; 2) an objective OT detection product can be used to increase situational awareness and forecaster confidence that a given storm is severe; and 3) this product may be particularly useful in regions with insufficient radar coverage.

Full access
Kristopher M. Bedka, Richard Dworak, Jason Brunner, and Wayne Feltz

Abstract

Two satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-μm infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus IRW BT difference (WV-IRW BTD). While both methods show good performance in published case study examples, it is important to quantitatively validate these methods relative to overshooting top events across the globe. Unfortunately, no overshooting top database currently exists that could be used in such study. This study examines National Aeronautics and Space Administration CloudSat Cloud Profiling Radar data to develop an OT detection validation database that is used to evaluate the IRW-texture and WV-IRW BTD OT detection methods. CloudSat data were manually examined over a 1.5-yr period to identify cases in which the cloud top penetrates above the tropopause height defined by a numerical weather prediction model and the surrounding cirrus anvil cloud top, producing 111 confirmed overshooting top events. When applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-based Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager proxy data, the IRW-texture (WV-IRW BTD) method offered a 76% (96%) probability of OT detection (POD) and 16% (81%) false-alarm ratio. Case study examples show that WV-IRW BTD > 0 K identifies much of the deep convective cloud top, while the IRW-texture method focuses only on regions with a spatial scale near that of commonly observed OTs. The POD decreases by 20% when IRW-texture is applied to current geostationary imager data, highlighting the importance of imager spatial resolution for observing and detecting OT regions.

Full access
Kristopher Bedka, Jason Brunner, Richard Dworak, Wayne Feltz, Jason Otkin, and Thomas Greenwald

Abstract

Deep convective storms with overshooting tops (OTs) are capable of producing hazardous weather conditions such as aviation turbulence, frequent lightning, heavy rainfall, large hail, damaging wind, and tornadoes. This paper presents a new objective infrared-only satellite OT detection method called infrared window (IRW)-texture. This method uses a combination of 1) infrared window channel brightness temperature (BT) gradients, 2) an NWP tropopause temperature forecast, and 3) OT size and BT criteria defined through analysis of 450 thunderstorm events within 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) imagery. Qualitative validation of the IRW-texture and the well-documented water vapor (WV) minus IRW BT difference (BTD) technique is performed using visible channel imagery, CloudSat Cloud Profiling Radar, and/or Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud-top height for selected cases. Quantitative validation of these two techniques is obtained though comparison with OT detections from synthetic satellite imagery derived from a cloud-resolving NWP simulation. The results show that the IRW-texture method false-alarm rate ranges from 4.2% to 38.8%, depending upon the magnitude of the overshooting and algorithm quality control settings. The results also show that this method offers a significant improvement over the WV-IRW BTD technique. A 5-yr Geosynchronous Operational Environmental Satellite (GOES)-12 OT climatology shows that OTs occur frequently over the Gulf Stream and Great Plains during the nighttime hours, which underscores the importance of using a day/night infrared-only detection algorithm. GOES-12 OT detections are compared with objective Eddy Dissipation Rate Turbulence and National Lightning Detection Network observations to show the strong relationship among OTs, aviation turbulence, and cloud-to-ground lightning activity.

Full access
John L. Cintineo, Michael J. Pavolonis, Justin M. Sieglaff, Anthony Wimmers, Jason Brunner, and Willard Bellon

Abstract

Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64-μm reflectance and 10.35-μm brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board GOES-16. Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35-μm brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64-μm reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.

Restricted access
John L. Cintineo, Michael J. Pavolonis, Justin M. Sieglaff, Lee Cronce, and Jason Brunner

ABSTRACT

Severe convective storms are hazardous to both life and property and thus their accurate and timely prediction is imperative. In response to this critical need to help fulfill the mission of the National Oceanic and Atmospheric Administration (NOAA), NOAA and the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin (UW) have developed NOAA ProbSevere—an operational short-term forecasting subsystem within the Multi-Radar Multi-Sensor (MRMS) system, providing storm-based probabilistic guidance to severe convective hazards. ProbSevere extracts and integrates pertinent data from a variety of meteorological sources via multiplatform multiscale storm identification and tracking in order to compute severe hazard probabilities in a statistical framework, using naïve Bayesian classifiers. Version 1 of ProbSevere (PSv1) employed one model—the “probability of any severe hazard” trained on the U.S. National Weather Service (NWS) criteria. Version 2 of ProbSevere (PSv2) implements four models, three naïve Bayesian classifiers trained to specific hazards: 1) severe hail, 2) severe straight-line wind gusts, 3) tornadoes; and a combined model for any of the aforementioned hazards, which takes the maximum probability of the three classifiers. This paper overviews the ProbSevere system and details the construction and selection of predictors for the models. An evaluation of the four models demonstrated that v2 is more skillful than v1 for each severe hazard with higher critical success index scores and that the optimal probability threshold varies by region of the United States. The discussion highlights PSv2 in NOAA’s Hazardous Weather Testbed (HWT) and current and future research for convective nowcasting.

Free access
Jason C. Brunner, Steven A. Ackerman, A. Scott Bachmeier, and Robert M. Rabin

Abstract

Early enhanced-V studies used 8-km ground-sampled distance and 30-min temporal-sampling Geostationary Operational Environmental Satellite (GOES) infrared (IR) imagery. In contrast, the ground-sampled distance of current satellite imagery is 1 km for low earth orbit (LEO) satellite IR imagery. This improved spatial resolution is used to detect and investigate quantitative parameters of the enhanced-V feature. One of the goals of this study is to use the 1-km-resolution LEO data to help understand the impact of higher-resolution GOES data (GOES-R) when it becomes available. A second goal is to use the LEO data available now to provide better severe storm information than GOES when it is available. This study investigates the enhanced-V feature observed with 1-km-resolution satellite imagery as an aid for severe weather warning forecasters by comparing with McCann’s enhanced-V study. Therefore, verification statistics such as the probability of detection, false alarm ratio, and critical success index were calculated. Additionally, the importance of upper-level winds to severe weather occurrence will be compared with that of the quantitative parameters of the enhanced-V feature. The main goal is to provide a basis for the development of an automated detection algorithm for enhanced-V features from the results in this study. Another goal is to examine daytime versus nighttime satellite overpass distributions with the enhanced-V feature.

Full access
John L. Cintineo, Michael J. Pavolonis, Justin M. Sieglaff, Daniel T. Lindsey, Lee Cronce, Jordan Gerth, Benjamin Rodenkirch, Jason Brunner, and Chad Gravelle

Abstract

The empirical Probability of Severe (ProbSevere) model, developed by the National Oceanic and Atmospheric Administration (NOAA) and the Cooperative Institute for Meteorological Satellite Studies (CIMSS), automatically extracts information related to thunderstorm development from several data sources to produce timely, short-term, statistical forecasts of thunderstorm intensity. More specifically, ProbSevere utilizes short-term numerical weather prediction guidance (NWP), geostationary satellite, ground-based radar, and ground-based lightning data to determine the probability that convective storm cells will produce severe weather up to 90 min in the future. ProbSevere guidance, which updates approximately every 2 min, is available to National Weather Service (NWS) Weather Forecast Offices with very short latency. This paper focuses on the integration of ground-based lightning detection data into ProbSevere. In addition, a thorough validation analysis is presented. The validation analysis demonstrates that ProbSevere has slightly less skill compared to NWS severe weather warnings, but can offer greater lead time to initial hazards. Feedback from NWS users has been highly favorable, with most forecasters responding that ProbSevere increases confidence and lead time in numerous warning situations.

Full access
Lukas Brunner, Carol McSweeney, Andrew P. Ballinger, Daniel J. Befort, Marianna Benassi, Ben Booth, Erika Coppola, Hylke de Vries, Glen Harris, Gabriele C. Hegerl, Reto Knutti, Geert Lenderink, Jason Lowe, Rita Nogherotto, Chris O’Reilly, Saïd Qasmi, Aurélien Ribes, Paolo Stocchi, and Sabine Undorf

Abstract

Political decisions, adaptation planning, and impact assessments need reliable estimates of future climate change and related uncertainties. To provide these estimates, different approaches to constrain, filter, or weight climate model projections into probabilistic distributions have been proposed. However, an assessment of multiple such methods to, for example, expose cases of agreement or disagreement, is often hindered by a lack of coordination, with methods focusing on a variety of variables, time periods, regions, or model pools. Here, a consistent framework is developed to allow a quantitative comparison of eight different methods; focus is given to summer temperature and precipitation change in three spatial regimes in Europe in 2041–60 relative to 1995–2014. The analysis draws on projections from several large ensembles, the CMIP5 multimodel ensemble, and perturbed physics ensembles, all using the high-emission scenario RCP8.5. The methods’ key features are summarized, assumptions are discussed, and resulting constrained distributions are presented. Method agreement is found to be dependent on the investigated region but is generally higher for median changes than for the uncertainty ranges. This study, therefore, highlights the importance of providing clear context about how different methods affect the assessed uncertainty—in particular, the upper and lower percentiles that are of interest to risk-averse stakeholders. The comparison also exposes cases in which diverse lines of evidence lead to diverging constraints; additional work is needed to understand how the underlying differences between methods lead to such disagreements and to provide clear guidance to users.

Open access