Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Jason P. Dunion x
  • All content x
Clear All Modify Search
Jason P. Dunion

Abstract

The Jordan mean tropical sounding has provided a benchmark reference for representing the climatology of the tropical North Atlantic and Caribbean Sea atmosphere for over 50 years. However, recent observations and studies have suggested that during the months of the North Atlantic hurricane season, this region of the world is affected by multiple air masses with very distinct thermodynamic and kinematic characteristics. This study examined ∼6000 rawinsonde observations from the Caribbean Sea region taken during the core months (July–October) of the 1995–2002 hurricane seasons. It was found that single mean soundings created from this new dataset were very similar to sounding work. However, recently developed multispectral satellite imagery that can track low- to midlevel dry air masses indicated that the 1995–2002 hurricane season dataset (and likely Jordan’s dataset as well) was dominated by three distinct air masses: moist tropical (MT), Saharan air layer (SAL), and midlatitude dry air intrusions (MLDAIs). Findings suggest that each sounding is associated with unique thermodynamic, kinematic, stability, and mean sea level pressure characteristics and that none of these soundings is particularly well represented by a single mean sounding such as Jordan’s. This work presents three new mean tropical soundings (MT, SAL, and MLDAI) for the tropical North Atlantic Ocean and Caribbean Sea region and includes information on their temporal variability, thermodynamics, winds, wind shear, stability, total precipitable water, and mean sea level pressure attributes. It is concluded that the new MT, SAL, and MLDAI soundings presented here provide a more robust depiction of the tropical North Atlantic and Caribbean Sea atmosphere during the Atlantic hurricane season and should replace the Jordan mean tropical sounding as the new benchmark soundings for this part of the world.

Full access
Jason P. Dunion and Christopher S. Marron

Abstract

The Jordan mean tropical sounding has provided a benchmark for representing the climatology of the tropical North Atlantic and Caribbean Sea since 1958. However, recent studies of the Saharan air layer (SAL) have suggested that the tropical atmosphere in these oceanic regions may contain two distinct soundings (SAL and non-SAL) with differing thermodynamic and kinematic structures and that a single mean sounding like Jordan’s does not effectively represent these differences. This work addresses this possibility by examining over 750 rawinsondes from the tropical North Atlantic Ocean and Caribbean Sea during the 2002 hurricane season. It was found that a two-peak bimodal moisture distribution (dry SAL and moist non-SAL) exists in this region and that the Jordan sounding does not represent either distribution particularly well. Additionally, SAL soundings exhibited higher values of geopotential height, unique temperature profiles, and stronger winds (with an enhanced easterly component) compared to the moist tropical non-SAL soundings. The results of this work suggest that the Jordan mean tropical sounding may need to be updated to provide a more robust depiction of the thermodynamics and kinematics that exist in the tropical North Atlantic Ocean and Caribbean Sea during the hurricane season.

Full access
Jason P. Dunion and Christopher S. Velden

A deep well-mixed, dry adiabatic layer forms over the Sahara Desert and Shale regions of North Africa during the late spring, summer, and early fall. As this air mass advances westward and emerges from the northwest African coast, it is undercut by cool, moist low-level air and becomes the Saharan air layer (SAL). The SAL contains very dry air and substantial mineral dust lifted from the arid desert surface over North Africa, and is often associated with a midlevel easterly jet. A temperature inversion occurs at the base of the SAL where very warm Saharan air overlies relatively cooler air above the ocean surface. Recently developed multispectral Geostationary Operational Environmental Satellite (GOES) infrared imagery detects the SAL's entrained dust and dry air as it moves westward over the tropical Atlantic. This imagery reveals that when the SAL engulfs tropical waves, tropical disturbances, or preexisting tropical cyclones (TCs), its dry air, temperature inversion, and strong vertical wind shear (associated with the midlevel easterly jet) can inhibit their ability to strengthen. The SAL's influence on TCs may be a factor in the TC intensity forecast problem in the Atlantic and may also contribute to this ocean basin's relatively reduced level of TC activity.

Full access
Jason P. Dunion and Christopher S. Velden

Abstract

Beginning with the 1997 hurricane season, the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin—Madison began demonstrating the derivation of real-time Geostationary Operational Environmental Satellite (GOES) low-level cloud-drift winds in the vicinity of Atlantic tropical cyclones. The winds are derived from tracking low-level clouds in sequential, high-resolution GOES visible channel imagery. Since then, these data have been provided to the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD) for evaluation in their real-time tropical cyclone surface wind objective analyses (H*Wind) that are disseminated to forecasters at the NOAA National Hurricane Center on an experimental basis. These wind analyses are proving useful as guidance to support forecasters's tropical cyclone advisories and warnings. The GOES satellite wind observations often provide essential near-surface coverage in the outer radii of the tropical cyclone circulation where conventional in situ observations (e.g., ships and buoys) are frequently widely spaced or nonexistent and reconnaissance aircraft do not normally fly. The GOES low-level cloud-tracked winds are extrapolated to the surface using a planetary boundary layer model developed at HRD for hurricane environments.

In this study, the unadjusted GOES winds are validated against wind profiles from the newly deployed global positioning system dropwindsondes, and the surface-adjusted winds are compared with collocated in situ surface measurements. The results show the ability of the GOES winds to provide valuable quantitative data in the periphery of tropical cyclones. It is also shown that the current scheme employed to extrapolate the winds to the surface results in small biases in both speed and direction. Nonlinear adjustments to account for these biases are presented.

Full access
Alan Brammer, Chris D. Thorncroft, and Jason P. Dunion

Abstract

A strong African easterly wave (AEW) left the West African coast in early September 2014 and operational global numerical forecasts suggested a potential for rapid tropical cyclogenesis of this disturbance in the eastern Atlantic, despite the presence of a large region of dry air northwest of the disturbance. Analysis and in situ observations show that after leaving the coast, the closed circulation associated with the AEW trough was not well aligned vertically, and therefore, low-level or midlevel dry air was advected below or above, respectively, areas of closed circulation. GPS dropwindsonde observations highlight the dry air undercutting the midlevel recirculation region in the southwestern quadrant. This advection of dry air constrains the spatial extent of deep convection within the AEW trough, leading to the vortex decaying. As the column continues to be displaced horizontally, losing vertical alignment, this enables increased horizontal advection of dry air into the system further limiting convective activity. Ensemble forecasts indicate that short-term errors in precipitation rate and vorticity generation can lead to an over intensified and well-aligned vortex, which then interacts less with the unfavorable environment, allowing for further convection and intensification. The stronger vortex provides more favorable conditions for precipitation through a more vertically coherent closed circulation and thus a positive feedback loop is initiated. The short-term forecasts of precipitation were shown to be sensitive to lower-tropospheric moisture anomalies around the AEW trough through ensemble sensitivity analysis from Global Ensemble Forecast System real-time forecasts.

Full access
Jason P. Dunion, Christopher D. Thorncroft, and David S. Nolan

Abstract

The diurnal cycle of tropical convection and tropical cyclones (TCs) has been previously described in observational-, satellite-, and modeling-based studies. The main objective of this work is to expand on these earlier studies by identifying signals of the TC diurnal cycle (TCDC) in a hurricane nature run, characterize their evolution in time and space, and better understand the processes that cause them. Based on previous studies that identified optimal conditions for the TCDC, a select period of the hurricane nature run is examined when the simulated storm was intense, in a low shear environment, and sufficiently far from land. When analyses are constrained by these conditions, marked radially propagating diurnal signals in radiation, thermodynamics, winds, and precipitation that affect a deep layer of the troposphere become evident in the model. These propagating diurnal signals, or TC diurnal pulses, are a distinguishing characteristic of the TCDC and manifest as a surge in upper-level outflow with underlying radially propagating tropical squall-line-like features. The results of this work support previous studies that examined the TCDC using satellite data and have implications for numerical modeling of TCs and furthering our understanding of how the TCDC forms, evolves, and possibly impacts TC structure and intensity.

Full access
Sim D. Aberson, Jason P. Dunion, and Frank D. Marks Jr.

Abstract

A photograph of a wavenumber-2 asymmetry in the eye of Hurricane Erin taken during a NOAA WP-3D research flight during the Fourth Convection and Moisture Experiment (CAMEX-4) field program on 10 September 2001 is described. The photograph of the cloud structure within the eye is evaluated using airborne and satellite remote sensing observations, and a possible explanation for the asymmetry is presented.

Full access
Jason P. Dunion, Christopher D. Thorncroft, and Christopher S. Velden

Abstract

The diurnal cycle of tropical convection and the tropical cyclone (TC) cirrus canopy has been described extensively in previous studies. However, a complete understanding of the TC diurnal cycle remains elusive and is an area of ongoing research. This work describes a new technique that uses infrared satellite image differencing to examine the evolution of the TC diurnal cycle for all North Atlantic major hurricanes from 2001 to 2010. The imagery reveals cyclical pulses in the infrared cloud field that regularly propagate radially outward from the storm. These diurnal pulses begin forming in the storm’s inner core near the time of sunset each day and continue to move away from the storm overnight, reaching areas several hundreds of kilometers from the circulation center by the following afternoon. A marked warming of the cloud tops occurs behind this propagating feature and there can be pronounced structural changes to a storm as it moves away from the inner core. This suggests that the TC diurnal cycle may be an important element of TC dynamics and may have relevance to TC structure and intensity change. Evidence is also presented showing the existence of statistically significant diurnal signals in TC wind radii and objective Dvorak satellite-based intensity estimates for the 10-yr hurricane dataset that was examined. Findings indicate that TC diurnal pulses are a distinguishing characteristic of the TC diurnal cycle and the repeatability of TC diurnal pulsing in time and space suggests that it may be an unrealized, yet fundamental TC process.

Full access
Jason P. Dunion, Christopher W. Landsea, Samuel H. Houston, and Mark D. Powell

Abstract

Hurricane Donna, the only major hurricane to strike the United States during the 1960 Atlantic hurricane season, passed over the middle Florida Keys near Sombrero Key before making landfall southeast of Naples, near Goodland, Florida, on 10 September at approximately 1600 UTC. This study makes detailed retrospective surface wind analyses of Hurricane Donna utilizing the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division's (HRD) H*Wind surface wind analysis system. Analyses were produced at intervals of 6 h between 1800 UTC 9 September and 1200 UTC 11 September 1960 while the hurricane was close to and over Florida. These analyses depict the storm track as well as the distribution and extent of tropical storm force, 50 kt (25.7 m s−1), and the hurricane-force wind radii throughout this time period and include new methodologies for adjusting aircraft flight-level data to the surface in the tropical cyclone core environment. Algorithms were developed to account for the effects of eyewall tilt and the warm core structure typical of tropical cyclones. Additional methods were developed using global positioning system (GPS) dropwindsondes (sondes) to more accurately adjust boundary layer winds to equivalent surface winds. The Kaplan–DeMaria Inland Wind Decay Model was also used for the first time to adjust landfall data being input into the H*Wind system. These data were used to generate low-weighted background fields that helped generate postlandfall wind field analyses of Hurricane Donna. Finally, swaths of peak winds, duration of hurricane- and major hurricane–force winds, and wind steadiness were produced to facilitate damage assessment. The information provided by these objective analyses is significantly more detailed than the more limited descriptions of peak winds, storm position, and minimum central pressure available in the National Hurricane Center's (NHC) hurricane database archive (HURDAT).

Full access
Jason P. Dunion, Samuel H. Houston, Christopher S. Velden, and Mark D. Powell

Abstract

The Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin—Madison recently (1997 season) began providing real-time Geostationary Operational Environmental Satellite (GOES) low-level cloud-drift winds in the vicinity of tropical cyclones on an experimental basis to the National Oceanic and Atmospheric Administration's (NOAA) Hurricane Research Division (HRD). The cloud-drift winds are derived from sequential high-resolution GOES visible channel imagery. These data were included in many of HRD's real-time tropical cyclone surface wind objective analyses, which were sent to NOAA's National Hurricane Center and the Central Pacific Hurricane Center on an experimental basis during the 1997–2001 hurricane seasons. These wind analyses were used to support the forecasters' tropical cyclone advisories and warnings. The satellite wind observations provide essential low-level coverage in the periphery of the tropical cyclone circulation where conventional in situ observations (e.g., ships, buoys, and Coastal-Marine Automated Network stations) are often widely spaced or nonexistent and reconnaissance aircraft do not normally fly. Though winds derived from microwave channels on polar orbiting satellites provide valuable surface wind data for HRD surface wind analyses, their swath coverage and orbital passes are limited spatially and temporally. GOES low-level visible (GLLV) winds offer nearly continuous spatial and temporal coverage in the western Atlantic and eastern Pacific basins. The GLLV winds were extrapolated to the surface using a planetary boundary layer model developed at HRD. These surface-adjusted satellite data were used in real-time surface wind analyses of 1998 Hurricane Georges, as well as in poststorm analyses of 1996 Hurricane Lili and 1997 Tropical Storm Claudette. The satellite observations often helped to define the spatial extent of the 17.5 m s−1 (34 kt) surface wind radii and also redefined the 25.7 m s−1 (50 kt) wind radius for one case. Examples of the impact of these data on real-time hurricane surface wind fields provided to the NHC will be discussed.

Full access