Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Jay Baker x
  • All content x
Clear All Modify Search
Robert J. Meyer, Jay Baker, Kenneth Broad, Jeff Czajkowski, and Ben Orlove

Findings are reported from two field studies that measured the evolution of coastal residents' risk perceptions and preparation plans as two hurricanes—Isaac and Sandy—were approaching the U.S. coast during the 2012 hurricane season. The data suggest that residents threatened by such storms had a poor understanding of the threat posed by the storms; they overestimated the likelihood that their homes would be subject to hurricane-force wind conditions but underestimated the potential damage that such winds could cause, and they misconstrued the greatest threat as coming from wind rather than water. These misperceptions translated into preparation actions that were not well commensurate with the nature and scale of the threat that they faced, with residents being well prepared for a modest wind event of short duration but not for a significant wind-and-water catastrophe. Possible causes of the biases and policy implications for improving hurricane warning communication are discussed.

Full access
Jesse E. Bell, Michael A. Palecki, C. Bruce Baker, William G. Collins, Jay H. Lawrimore, Ronald D. Leeper, Mark E. Hall, John Kochendorfer, Tilden P. Meyers, Tim Wilson, and Howard J. Diamond

Abstract

The U.S. Climate Reference Network (USCRN) is a network of climate-monitoring stations maintained and operated by the National Oceanic and Atmospheric Administration (NOAA) to provide climate-science-quality measurements of air temperature and precipitation. The stations in the network were designed to be extensible to other missions, and the National Integrated Drought Information System program determined that the USCRN could be augmented to provide observations that are more drought relevant. To increase the network’s capability of monitoring soil processes and drought, soil observations were added to USCRN instrumentation. In 2011, the USCRN team completed at each USCRN station in the conterminous United States the installation of triplicate-configuration soil moisture and soil temperature probes at five standards depths (5, 10, 20, 50, and 100 cm) as prescribed by the World Meteorological Organization; in addition, the project included the installation of a relative humidity sensor at each of the stations. Work is also under way to eventually install soil sensors at the expanding USCRN stations in Alaska. USCRN data are stewarded by the NOAA National Climatic Data Center, and instrument engineering and performance studies, installation, and maintenance are performed by the NOAA Atmospheric Turbulence and Diffusion Division. This article provides a technical description of the USCRN soil observations in the context of U.S. soil-climate–measurement efforts and discusses the advantage of the triple-redundancy approach applied by the USCRN.

Restricted access
Howard J. Diamond, Thomas R. Karl, Michael A. Palecki, C. Bruce Baker, Jesse E. Bell, Ronald D. Leeper, David R. Easterling, Jay H. Lawrimore, Tilden P. Meyers, Michael R. Helfert, Grant Goodge, and Peter W. Thorne

The year 2012 marks a decade of observations undertaken by the U.S. Climate Reference Network (USCRN) under the auspices of NOAA's National Climatic Data Center and Atmospheric Turbulence and Diffusion Division. The network consists of 114 sites across the conterminous 48 states, with additional sites in Alaska and Hawaii. Stations are installed in open (where possible), rural sites very likely to have stable land-cover/use conditions for several decades to come. At each site a suite of meteorological parameters are monitored, including triple redundancy for the primary air temperature and precipitation variables and for soil moisture/temperature. Instrumentation is regularly calibrated to National Institute for Standards and Technology (NIST) standards and maintained by a staff of expert engineers. This attention to detail in USCRN is intended to ensure the creation of an unimpeachable record of changes in surface climate over the United States for decades to come. Data are made available without restriction for all public, private, and government use. This article describes the rationale for the USCRN, its implementation, and some of the highlights of the first decade of operations. One critical use of these observations is as an independent data source to verify the existing U.S. temperature record derived from networks corrected for nonhomogenous histories. Future directions for the network are also discussed, including the applicability of USCRN approaches for networks monitoring climate at scales from regional to global. Constructive feedback from end users will allow for continued improvement of USCRN in the future and ensure that it continues to meet stakeholder requirements for precise climate measurements.

Full access
John T. Sullivan, Timothy Berkoff, Guillaume Gronoff, Travis Knepp, Margaret Pippin, Danette Allen, Laurence Twigg, Robert Swap, Maria Tzortziou, Anne M. Thompson, Ryan M. Stauffer, Glenn M. Wolfe, James Flynn, Sally E. Pusede, Laura M. Judd, William Moore, Barry D. Baker, Jay Al-Saadi, and Thomas J. McGee

Abstract

Coastal regions have historically represented a significant challenge for air quality investigations because of water–land boundary transition characteristics and a paucity of measurements available over water. Prior studies have identified the formation of high levels of ozone over water bodies, such as the Chesapeake Bay, that can potentially recirculate back over land to significantly impact populated areas. Earth-observing satellites and forecast models face challenges in capturing the coastal transition zone where small-scale meteorological dynamics are complex and large changes in pollutants can occur on very short spatial and temporal scales. An observation strategy is presented to synchronously measure pollutants “over land” and “over water” to provide a more complete picture of chemical gradients across coastal boundaries for both the needs of state and local environmental management and new remote sensing platforms. Intensive vertical profile information from ozone lidar systems and ozonesondes, obtained at two main sites, one over land and the other over water, are complemented by remote sensing and in situ observations of air quality from ground-based, airborne (both personned and unpersonned), and shipborne platforms. These observations, coupled with reliable chemical transport simulations, such as the National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC), are expected to lead to a more fully characterized and complete land–water interaction observing system that can be used to assess future geostationary air quality instruments, such as the National Aeronautics and Space Administration (NASA) Tropospheric Emissions: Monitoring of Pollution (TEMPO), and current low-Earth-orbiting satellites, such as the European Space Agency’s Sentinel-5 Precursor (S5-P) with its Tropospheric Monitoring Instrument (TROPOMI).

Open access