Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Jayme Laber x
  • All content x
Clear All Modify Search
Steven Marcus, Jinwon Kim, Toshio Chin, David Danielson, and Jayme Laber

Abstract

The effects of precipitable water vapor (PWV) retrievals from the Southern California Integrated GPS Network (SCIGN) on quantitative precipitation forecast (QPF) skill are examined over two flood-prone regions of Southern California: Santa Barbara (SB) and Ventura County (VC). Two sets of QPFs are made, one using the initial water vapor field from the NCEP 40-km Eta initial analysis, and another in which the initial Eta water vapor field is modified by incorporating the PWV data from the SCIGN receivers. Lateral boundary data for the QPFs, as well as the hydrostatic component of the GPS zenith delay data, are estimated from the Eta analysis. Case studies of a winter storm on 2 February during the 1997/98 El Niño, and storms leading up to the La Conchita, California, landslide on 10 January 2005, show notably improved QPFs for the first 3–6 h with the addition of GPS PWV data. For a total of 47 winter storm forecasts between February 1998 and January 2005 the average absolute QPF improvement is small; however, QPF improvements exceed 5 mm in several underpredicted rainfall events, with GPS data also improving most cases with overpredicted rainfall. The GPS improvements are most significant (above or near the 2σ level) when the low-level winds off the coast of Southern California are from the southern (SW to SE) quadrant. To extend the useful forecast skill enhancement beyond six hours, however, additional sources of water vapor data over broader areas of the adjacent Pacific Ocean are needed.

Full access
Pedro Restrepo, David P. Jorgensen, Susan H. Cannon, John Costa, Jayme Laber, Jon Major, Brooks Martner, Jim Purpura, and Kevin Werner
Full access
David P. Jorgensen, Maiana N. Hanshaw, Kevin M. Schmidt, Jayme L. Laber, Dennis M. Staley, Jason W. Kean, and Pedro J. Restrepo

Abstract

A portable truck-mounted C-band Doppler weather radar was deployed to observe rainfall over the Station Fire burn area near Los Angeles, California, during the winter of 2009/10 to assist with debris-flow warning decisions. The deployments were a component of a joint NOAA–U.S. Geological Survey (USGS) research effort to improve definition of the rainfall conditions that trigger debris flows from steep topography within recent wildfire burn areas. A procedure was implemented to blend various dual-polarized estimators of precipitation (for radar observations taken below the freezing level) using threshold values for differential reflectivity and specific differential phase shift that improves the accuracy of the rainfall estimates over a specific burn area sited with terrestrial tipping-bucket rain gauges. The portable radar outperformed local Weather Surveillance Radar-1988 Doppler (WSR-88D) National Weather Service network radars in detecting rainfall capable of initiating post-fire runoff-generated debris flows. The network radars underestimated hourly precipitation totals by about 50%. Consistent with intensity–duration threshold curves determined from past debris-flow events in burned areas in Southern California, the portable radar-derived rainfall rates exceeded the empirical thresholds over a wider range of storm durations with a higher spatial resolution than local National Weather Service operational radars. Moreover, the truck-mounted C-band radar dual-polarimetric-derived estimates of rainfall intensity provided a better guide to the expected severity of debris-flow events, based on criteria derived from previous events using rain gauge data, than traditional radar-derived rainfall approaches using reflectivity–rainfall relationships for either the portable or operational network WSR-88D radars. Part of the reason for the improvement was due to siting the radar closer to the burn zone than the WSR-88Ds, but use of the dual-polarimetric variables improved the rainfall estimation by ~12% over the use of traditional ZR relationships.

Full access
Angelyn W. Moore, Ivory J. Small, Seth I. Gutman, Yehuda Bock, John L. Dumas, Peng Fang, Jennifer S. Haase, Mark E. Jackson, and Jayme L. Laber

Abstract

During the North American Monsoon, low-to-midlevel moisture is transported in surges from the Gulf of California and Eastern Pacific Ocean into Mexico and the American Southwest. As rising levels of precipitable water interact with the mountainous terrain, severe thunderstorms can develop, resulting in flash floods that threaten life and property. The rapid evolution of these storms, coupled with the relative lack of upper-air and surface weather observations in the region, make them difficult to predict and monitor, and guidance from numerical weather prediction models can vary greatly under these conditions. Precipitable water vapor (PW) estimates derived from continuously operating ground-based GPS receivers have been available for some time from NOAA’s GPS-Met program, but these observations have been of limited utility to operational forecasters in part due to poor spatial resolution. Under a NASA Advanced Information Systems Technology project, 37 real-time stations were added to NOAA’s GPS-Met analysis providing 30-min PW estimates, reducing station spacing from approximately 150 km to 30 km in Southern California. An 18–22 July 2013 North American Monsoon event provided an opportunity to evaluate the utility of the additional upper-air moisture observations to enhance National Weather Service (NWS) forecaster situational awareness during the rapidly developing event. NWS forecasters used these additional data to detect rapid moisture increases at intervals between the available 1–6-h model updates and approximately twice-daily radiosonde observations, and these contributed tangibly to the issuance of timely flood watches and warnings in advance of flash floods, debris flows, and related road closures.

Full access