Search Results
You are looking at 1 - 10 of 12 items for
- Author or Editor: Jaymes S. Kenyon x
- Refine by Access: All Content x
Abstract
The spatial distribution of snowfall accumulation accompanying winter storms is a product of both snowfall rate and duration. Winter storms are commonly associated with mesoscale snowbands that can strongly modulate snowfall accumulation. Although the development of mesoscale snowbands can usually be anticipated, snowband residence time at a fixed location is often a forecasting challenge. However, given that snowband residence time is related to characteristics of band motion, an improved understanding of band motion presents an opportunity to improve snowfall-accumulation forecasts. This study investigates environmental features associated with specific snowband motion characteristics. Using radar reflectivity data, snowband events in the northeast United States spanning a 6-yr period are categorized according to a band-motion classification scheme, with this scheme consisting of laterally translating, hybrid, laterally quasi-stationary, and pivoting snowbands. On the basis of this classification, composite analysis is performed to identify common environmental features associated with particular band-motion categories. Results indicate that snowband motion is related to cyclone-relative band position, the confluence/diffluence and curvature of midlevel streamlines, and the distribution of horizontal temperature advection. Snowband motion is also related to hodograph shape, as well as to the across- and along-isotherm components of the Q vector. Composite results are supplemented with case studies, which suggest that laterally quasi-stationary and pivoting snowbands can favor distinct gradients in snowfall accumulation. The present study proposes that snowband motion warrants consideration during the forecasting process and, to that end, conceptual models are presented to synthesize key findings for operational application.
Abstract
The spatial distribution of snowfall accumulation accompanying winter storms is a product of both snowfall rate and duration. Winter storms are commonly associated with mesoscale snowbands that can strongly modulate snowfall accumulation. Although the development of mesoscale snowbands can usually be anticipated, snowband residence time at a fixed location is often a forecasting challenge. However, given that snowband residence time is related to characteristics of band motion, an improved understanding of band motion presents an opportunity to improve snowfall-accumulation forecasts. This study investigates environmental features associated with specific snowband motion characteristics. Using radar reflectivity data, snowband events in the northeast United States spanning a 6-yr period are categorized according to a band-motion classification scheme, with this scheme consisting of laterally translating, hybrid, laterally quasi-stationary, and pivoting snowbands. On the basis of this classification, composite analysis is performed to identify common environmental features associated with particular band-motion categories. Results indicate that snowband motion is related to cyclone-relative band position, the confluence/diffluence and curvature of midlevel streamlines, and the distribution of horizontal temperature advection. Snowband motion is also related to hodograph shape, as well as to the across- and along-isotherm components of the Q vector. Composite results are supplemented with case studies, which suggest that laterally quasi-stationary and pivoting snowbands can favor distinct gradients in snowfall accumulation. The present study proposes that snowband motion warrants consideration during the forecasting process and, to that end, conceptual models are presented to synthesize key findings for operational application.
Abstract
The spatial distribution of snowfall accumulation accompanying winter storms is a product of both snowfall rate and duration. Winter storms are commonly associated with mesoscale snowbands that can strongly modulate snowfall accumulation. Although the development of mesoscale snowbands can usually be anticipated, snowband residence time at a fixed location is often a forecasting challenge. However, given that snowband residence time is related to characteristics of band motion, an improved understanding of band motion presents an opportunity to improve snowfall-accumulation forecasts. This study investigates environmental features associated with specific snowband motion characteristics. Using radar reflectivity data, snowband events in the northeast United States spanning a 6-yr period are categorized according to a band-motion classification scheme, with this scheme consisting of laterally translating, hybrid, laterally quasi-stationary, and pivoting snowbands. On the basis of this classification, composite analysis is performed to identify common environmental features associated with particular band-motion categories. Results indicate that snowband motion is related to cyclone-relative band position, the confluence/diffluence and curvature of midlevel streamlines, and the distribution of horizontal temperature advection. Snowband motion is also related to hodograph shape, as well as to the across- and along-isotherm components of the Q vector. Composite results are supplemented with case studies, which suggest that laterally quasi-stationary and pivoting snowbands can favor distinct gradients in snowfall accumulation. The present study proposes that snowband motion warrants consideration during the forecasting process and, to that end, conceptual models are presented to synthesize key findings for operational application.
Abstract
The spatial distribution of snowfall accumulation accompanying winter storms is a product of both snowfall rate and duration. Winter storms are commonly associated with mesoscale snowbands that can strongly modulate snowfall accumulation. Although the development of mesoscale snowbands can usually be anticipated, snowband residence time at a fixed location is often a forecasting challenge. However, given that snowband residence time is related to characteristics of band motion, an improved understanding of band motion presents an opportunity to improve snowfall-accumulation forecasts. This study investigates environmental features associated with specific snowband motion characteristics. Using radar reflectivity data, snowband events in the northeast United States spanning a 6-yr period are categorized according to a band-motion classification scheme, with this scheme consisting of laterally translating, hybrid, laterally quasi-stationary, and pivoting snowbands. On the basis of this classification, composite analysis is performed to identify common environmental features associated with particular band-motion categories. Results indicate that snowband motion is related to cyclone-relative band position, the confluence/diffluence and curvature of midlevel streamlines, and the distribution of horizontal temperature advection. Snowband motion is also related to hodograph shape, as well as to the across- and along-isotherm components of the Q vector. Composite results are supplemented with case studies, which suggest that laterally quasi-stationary and pivoting snowbands can favor distinct gradients in snowfall accumulation. The present study proposes that snowband motion warrants consideration during the forecasting process and, to that end, conceptual models are presented to synthesize key findings for operational application.
Abstract
The land surface model (LSM) described in this manuscript was originally developed as part of the NOAA Rapid Update Cycle (RUC) model development effort; with ongoing modifications, it is now used as an option for the WRF community model. The RUC model and its WRF-based NOAA successor, the Rapid Refresh (RAP), are hourly updated and have an emphasis on short-range, near-surface forecasts including aviation-impact variables and preconvective environment. Therefore, coupling to this LSM (hereafter the RUC LSM) has been critical to provide more accurate lower boundary conditions. This paper describes changes made to the RUC LSM since earlier descriptions, including extension from six to nine levels, improved snow treatment, and new land-use data from MODIS.
The RUC LSM became operational at the NOAA/National Centers for Environmental Prediction (NCEP) as part of the RUC from 1998–2012 and as part of the RAP from 2012 through the present. The simple treatments of basic land surface processes in the RUC LSM have proven to be physically robust and capable of realistically representing the evolution of soil moisture, soil temperature, and snow in cycled models. Extension of the RAP domain to encompass all of North America and adjacent high-latitude ocean areas necessitated further development of the RUC LSM for application in the tundra permafrost regions and over Arctic sea ice. Other modifications include refinements in the snow model and a more accurate specification of albedo, roughness length, and other surface properties. These recent modifications in the RUC LSM are described and evaluated in this paper.
Abstract
The land surface model (LSM) described in this manuscript was originally developed as part of the NOAA Rapid Update Cycle (RUC) model development effort; with ongoing modifications, it is now used as an option for the WRF community model. The RUC model and its WRF-based NOAA successor, the Rapid Refresh (RAP), are hourly updated and have an emphasis on short-range, near-surface forecasts including aviation-impact variables and preconvective environment. Therefore, coupling to this LSM (hereafter the RUC LSM) has been critical to provide more accurate lower boundary conditions. This paper describes changes made to the RUC LSM since earlier descriptions, including extension from six to nine levels, improved snow treatment, and new land-use data from MODIS.
The RUC LSM became operational at the NOAA/National Centers for Environmental Prediction (NCEP) as part of the RUC from 1998–2012 and as part of the RAP from 2012 through the present. The simple treatments of basic land surface processes in the RUC LSM have proven to be physically robust and capable of realistically representing the evolution of soil moisture, soil temperature, and snow in cycled models. Extension of the RAP domain to encompass all of North America and adjacent high-latitude ocean areas necessitated further development of the RUC LSM for application in the tundra permafrost regions and over Arctic sea ice. Other modifications include refinements in the snow model and a more accurate specification of albedo, roughness length, and other surface properties. These recent modifications in the RUC LSM are described and evaluated in this paper.
Abstract
Because of limitations of variational and ensemble data assimilation schemes, resulting analysis fields exhibit some noise from imbalance in subsequent model forecasts. Controlling finescale noise is desirable in the NOAA’s Rapid Refresh (RAP) assimilation/forecast system, which uses an hourly data assimilation cycle. Hence, a digital filter initialization (DFI) capability has been introduced into the Weather Research and Forecasting Model and applied operationally in the RAP, for which hourly intermittent assimilation makes DFI essential. A brief overview of the DFI approach, its implementation, and some of its advantages are discussed. Results from a 1-week impact test with and without DFI demonstrate that DFI is effective at reducing high-frequency noise in short-term operational forecasts as well as providing evidence of reduced errors in the 1-h mass and momentum fields. However, DFI is also shown to reduce the strength of parameterized deep moist convection during the first hour of the forecast.
Abstract
Because of limitations of variational and ensemble data assimilation schemes, resulting analysis fields exhibit some noise from imbalance in subsequent model forecasts. Controlling finescale noise is desirable in the NOAA’s Rapid Refresh (RAP) assimilation/forecast system, which uses an hourly data assimilation cycle. Hence, a digital filter initialization (DFI) capability has been introduced into the Weather Research and Forecasting Model and applied operationally in the RAP, for which hourly intermittent assimilation makes DFI essential. A brief overview of the DFI approach, its implementation, and some of its advantages are discussed. Results from a 1-week impact test with and without DFI demonstrate that DFI is effective at reducing high-frequency noise in short-term operational forecasts as well as providing evidence of reduced errors in the 1-h mass and momentum fields. However, DFI is also shown to reduce the strength of parameterized deep moist convection during the first hour of the forecast.
Abstract
The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Advanced Research version of the Weather Research and Forecast (WRF-ARW) Model that covers the conterminous United States and Alaska and runs hourly (for CONUS; every 3 h for Alaska) in real time at the National Centers for Environmental Prediction. The high-resolution forecasts support a variety of user applications including aviation, renewable energy, and prediction of many forms of severe weather. In this second of two articles, forecast performance is documented for a wide variety of forecast variables and across HRRR versions. HRRR performance varies across geographical domain, season, and time of day depending on both prevalence of particular meteorological phenomena and the availability of both conventional and nonconventional observations. Station-based verification of surface weather forecasts (2-m temperature and dewpoint temperature, 10-m winds, visibility, and cloud ceiling) highlights the ability of the HRRR to represent daily planetary boundary layer evolution and the development of convective and stratiform cloud systems, while gridded verification of simulated composite radar reflectivity and quantitative precipitation forecasts reveals HRRR predictive skill for summer and winter precipitation systems. Significant improvements in performance for specific forecast problems are documented for the upgrade versions of the HRRR (HRRRv2, v3, and v4) implemented in 2016, 2018, and 2020, respectively. Development of the HRRR model data assimilation and physics paves the way for future progress with operational convective-scale modeling.
Significance Statement
NOAA’s operational hourly updating convection-allowing model, the High-Resolution Rapid Refresh (HRRR), is a key tool for short-range weather forecasting and situational awareness. Improvements in assimilation of weather observations, as well as in physics parameterizations, has led to improvements in simulated radar reflectivity and quantitative precipitation forecasts since the initial implementation of HRRR in September 2014. Other targeted development has focused on improved representation of the diurnal cycle of the planetary boundary layer, resulting in improved near-surface temperature and humidity forecasts. Additional physics and data assimilation changes have led to improved treatment of the development and erosion of low-level clouds, including subgrid-scale clouds. The final version of HRRR features storm-scale ensemble data assimilation and explicit prediction of wildfire smoke plumes.
Abstract
The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Advanced Research version of the Weather Research and Forecast (WRF-ARW) Model that covers the conterminous United States and Alaska and runs hourly (for CONUS; every 3 h for Alaska) in real time at the National Centers for Environmental Prediction. The high-resolution forecasts support a variety of user applications including aviation, renewable energy, and prediction of many forms of severe weather. In this second of two articles, forecast performance is documented for a wide variety of forecast variables and across HRRR versions. HRRR performance varies across geographical domain, season, and time of day depending on both prevalence of particular meteorological phenomena and the availability of both conventional and nonconventional observations. Station-based verification of surface weather forecasts (2-m temperature and dewpoint temperature, 10-m winds, visibility, and cloud ceiling) highlights the ability of the HRRR to represent daily planetary boundary layer evolution and the development of convective and stratiform cloud systems, while gridded verification of simulated composite radar reflectivity and quantitative precipitation forecasts reveals HRRR predictive skill for summer and winter precipitation systems. Significant improvements in performance for specific forecast problems are documented for the upgrade versions of the HRRR (HRRRv2, v3, and v4) implemented in 2016, 2018, and 2020, respectively. Development of the HRRR model data assimilation and physics paves the way for future progress with operational convective-scale modeling.
Significance Statement
NOAA’s operational hourly updating convection-allowing model, the High-Resolution Rapid Refresh (HRRR), is a key tool for short-range weather forecasting and situational awareness. Improvements in assimilation of weather observations, as well as in physics parameterizations, has led to improvements in simulated radar reflectivity and quantitative precipitation forecasts since the initial implementation of HRRR in September 2014. Other targeted development has focused on improved representation of the diurnal cycle of the planetary boundary layer, resulting in improved near-surface temperature and humidity forecasts. Additional physics and data assimilation changes have led to improved treatment of the development and erosion of low-level clouds, including subgrid-scale clouds. The final version of HRRR features storm-scale ensemble data assimilation and explicit prediction of wildfire smoke plumes.
Abstract
Doppler-lidar wind-profile measurements at three sites were used to evaluate NWP model errors from two versions of NOAA’s 3-km-grid HRRR model, to see whether updates in the latest version 4 reduced errors when compared against the original version 1. Nested (750-m grid) versions of each were also tested to see how grid spacing affected forecast skill. The measurements were part of the field phase of the Second Wind Forecasting Improvement Project (WFIP2), an 18-month deployment into central Oregon–Washington, a major wind-energy-producing region. This study focuses on errors in simulating marine intrusions, a summertime, 600–800-m-deep, regional sea-breeze flow found to generate large errors. HRRR errors proved to be complex and site dependent. The most prominent error resulted from a premature drop in modeled marine-intrusion wind speeds after local midnight, when lidar-measured winds of greater than 8 m s−1 persisted through the next morning. These large negative errors were offset at low levels by positive errors due to excessive mixing, complicating the interpretation of model “improvement,” such that the updates to the full-scale versions produced mixed results, sometimes enhancing but sometimes degrading model skill. Nesting consistently improved model performance, with version 1’s nest producing the smallest errors overall. HRRR’s ability to represent the stages of sea-breeze forcing was evaluated using radiation budget, surface-energy balance, and near-surface temperature measurements available during WFIP2. The significant site-to-site differences in model error and the complex nature of these errors mean that field-measurement campaigns having dense arrays of profiling sensors are necessary to properly diagnose and characterize model errors, as part of a systematic approach to NWP model improvement.
Significance Statement
Dramatic increases in NWP model skill will be required over the coming decades. This paper describes the role of major deployments of accurate profiling sensors in achieving that goal and presents an example from the Second Wind Forecast Improvement Program (WFIP2). Wind-profile data from scanning Doppler lidars were used to evaluate two versions of HRRR, the original and an updated version, and nested versions of each. This study focuses on the ability of updated HRRR versions to improve upon predicting a regional sea-breeze flow, which was found to generate large errors by the original HRRR. Updates to the full-scale HRRR versions produced mixed results, but the finer-mesh versions consistently reduced model errors.
Abstract
Doppler-lidar wind-profile measurements at three sites were used to evaluate NWP model errors from two versions of NOAA’s 3-km-grid HRRR model, to see whether updates in the latest version 4 reduced errors when compared against the original version 1. Nested (750-m grid) versions of each were also tested to see how grid spacing affected forecast skill. The measurements were part of the field phase of the Second Wind Forecasting Improvement Project (WFIP2), an 18-month deployment into central Oregon–Washington, a major wind-energy-producing region. This study focuses on errors in simulating marine intrusions, a summertime, 600–800-m-deep, regional sea-breeze flow found to generate large errors. HRRR errors proved to be complex and site dependent. The most prominent error resulted from a premature drop in modeled marine-intrusion wind speeds after local midnight, when lidar-measured winds of greater than 8 m s−1 persisted through the next morning. These large negative errors were offset at low levels by positive errors due to excessive mixing, complicating the interpretation of model “improvement,” such that the updates to the full-scale versions produced mixed results, sometimes enhancing but sometimes degrading model skill. Nesting consistently improved model performance, with version 1’s nest producing the smallest errors overall. HRRR’s ability to represent the stages of sea-breeze forcing was evaluated using radiation budget, surface-energy balance, and near-surface temperature measurements available during WFIP2. The significant site-to-site differences in model error and the complex nature of these errors mean that field-measurement campaigns having dense arrays of profiling sensors are necessary to properly diagnose and characterize model errors, as part of a systematic approach to NWP model improvement.
Significance Statement
Dramatic increases in NWP model skill will be required over the coming decades. This paper describes the role of major deployments of accurate profiling sensors in achieving that goal and presents an example from the Second Wind Forecast Improvement Program (WFIP2). Wind-profile data from scanning Doppler lidars were used to evaluate two versions of HRRR, the original and an updated version, and nested versions of each. This study focuses on the ability of updated HRRR versions to improve upon predicting a regional sea-breeze flow, which was found to generate large errors by the original HRRR. Updates to the full-scale HRRR versions produced mixed results, but the finer-mesh versions consistently reduced model errors.
Abstract
Ground-based Doppler-lidar instrumentation provides atmospheric wind data at dramatically improved accuracies and spatial/temporal resolutions. These capabilities have provided new insights into atmospheric flow phenomena, but they also should have a strong role in NWP model improvement. Insight into the nature of model errors can be gained by studying recurrent atmospheric flows, here a regional summertime diurnal sea breeze and subsequent marine-air intrusion into the arid interior of Oregon–Washington, where these winds are an important wind-energy resource. These marine intrusions were sampled by three scanning Doppler lidars in the Columbia River basin as part of the Second Wind Forecast Improvement Project (WFIP2), using data from summer 2016. Lidar time–height cross sections of wind speed identified 8 days when the diurnal flow cycle (peak wind speeds at midnight, afternoon minima) was obvious and strong. The 8-day composite time–height cross sections of lidar wind speeds are used to validate those generated by the operational NCEP–HRRR model. HRRR simulated the diurnal wind cycle, but produced errors in the timing of onset and significant errors due to a premature nighttime demise of the intrusion flow, producing low-bias errors of 6 m s−1. Day-to-day and in the composite, whenever a marine intrusion occurred, HRRR made these same errors. The errors occurred under a range of gradient wind conditions indicating that they resulted from the misrepresentation of physical processes within a limited region around the measurement locations. Because of their generation within a limited geographical area, field measurement programs can be designed to find and address the sources of these NWP errors.
Abstract
Ground-based Doppler-lidar instrumentation provides atmospheric wind data at dramatically improved accuracies and spatial/temporal resolutions. These capabilities have provided new insights into atmospheric flow phenomena, but they also should have a strong role in NWP model improvement. Insight into the nature of model errors can be gained by studying recurrent atmospheric flows, here a regional summertime diurnal sea breeze and subsequent marine-air intrusion into the arid interior of Oregon–Washington, where these winds are an important wind-energy resource. These marine intrusions were sampled by three scanning Doppler lidars in the Columbia River basin as part of the Second Wind Forecast Improvement Project (WFIP2), using data from summer 2016. Lidar time–height cross sections of wind speed identified 8 days when the diurnal flow cycle (peak wind speeds at midnight, afternoon minima) was obvious and strong. The 8-day composite time–height cross sections of lidar wind speeds are used to validate those generated by the operational NCEP–HRRR model. HRRR simulated the diurnal wind cycle, but produced errors in the timing of onset and significant errors due to a premature nighttime demise of the intrusion flow, producing low-bias errors of 6 m s−1. Day-to-day and in the composite, whenever a marine intrusion occurred, HRRR made these same errors. The errors occurred under a range of gradient wind conditions indicating that they resulted from the misrepresentation of physical processes within a limited region around the measurement locations. Because of their generation within a limited geographical area, field measurement programs can be designed to find and address the sources of these NWP errors.
Abstract
The second Wind Forecast Improvement Project (WFIP2) is a multiagency field campaign held in the Columbia Gorge area (October 2015–March 2017). The main goal of the project is to understand and improve the forecast skill of numerical weather prediction (NWP) models in complex terrain, particularly beneficial for the wind energy industry. This region is well known for its excellent wind resource. One of the biggest challenges for wind power production is the accurate forecasting of wind ramp events (large changes of generated power over short periods of time). Poor forecasting of the ramps requires large and sudden adjustments in conventional power generation, ultimately increasing the costs of power. A Ramp Tool and Metric (RT&M) was developed during the first WFIP experiment, held in the U.S. Great Plains (September 2011–August 2012). The RT&M was designed to explicitly measure the skill of NWP models at forecasting wind ramp events. Here we apply the RT&M to 80-m (turbine hub-height) wind speeds measured by 19 sodars and three lidars, and to forecasts from the High-Resolution Rapid Refresh (HRRR), 3-km, and from the High-Resolution Rapid Refresh Nest (HRRRNEST), 750-m horizontal grid spacing, models. The diurnal and seasonal distribution of ramp events are analyzed, finding a noticeable diurnal variability for spring and summer but less for fall and especially winter. Also, winter has fewer ramps compared to the other seasons. The model skill at forecasting ramp events, including the impact of the modification to the model physical parameterizations, was finally investigated.
Abstract
The second Wind Forecast Improvement Project (WFIP2) is a multiagency field campaign held in the Columbia Gorge area (October 2015–March 2017). The main goal of the project is to understand and improve the forecast skill of numerical weather prediction (NWP) models in complex terrain, particularly beneficial for the wind energy industry. This region is well known for its excellent wind resource. One of the biggest challenges for wind power production is the accurate forecasting of wind ramp events (large changes of generated power over short periods of time). Poor forecasting of the ramps requires large and sudden adjustments in conventional power generation, ultimately increasing the costs of power. A Ramp Tool and Metric (RT&M) was developed during the first WFIP experiment, held in the U.S. Great Plains (September 2011–August 2012). The RT&M was designed to explicitly measure the skill of NWP models at forecasting wind ramp events. Here we apply the RT&M to 80-m (turbine hub-height) wind speeds measured by 19 sodars and three lidars, and to forecasts from the High-Resolution Rapid Refresh (HRRR), 3-km, and from the High-Resolution Rapid Refresh Nest (HRRRNEST), 750-m horizontal grid spacing, models. The diurnal and seasonal distribution of ramp events are analyzed, finding a noticeable diurnal variability for spring and summer but less for fall and especially winter. Also, winter has fewer ramps compared to the other seasons. The model skill at forecasting ramp events, including the impact of the modification to the model physical parameterizations, was finally investigated.
Abstract
Complex-terrain locations often have repeatable near-surface wind patterns, such as synoptic gap flows and local thermally forced flows. An example is the Columbia River Valley in east-central Oregon–Washington, a significant wind energy generation region and the site of the Second Wind Forecast Improvement Project (WFIP2). Data from three Doppler lidars deployed during WFIP2 define and characterize summertime wind regimes and their large-scale contexts, and provide insight into NWP model errors by examining differences in the ability of a model [NOAA’s High-Resolution Rapid Refresh (HRRR version 1)] to forecast wind speed profiles for different flow regimes. Seven regimes were identified based on daily time series of the lidar-measured rotor-layer winds, which then suggested two broad categories. First, in three of the regimes the primary dynamic forcing was the large-scale pressure gradient. Second, in two other regimes the dominant forcing was the diurnal heating-cooling cycle (regional sea-breeze-type dynamics), including the marine intrusion previously described, which generates strong nocturnal winds over the region. For the large-scale pressure gradient regimes, HRRR had wind speed biases of ~1 m s−1 and RMSEs of 2–3 m s−1. Errors were much larger for the thermally forced regimes, owing to the premature demise of the strong nocturnal flow in HRRR. Thus, the more dominant the role of surface heating in generating the flow, the larger the errors. Major errors could result from surface heating of the atmosphere, boundary layer responses to that heating, and associated terrain interactions. Measurement/modeling research programs should be designed to determine which of these modeled processes produce the largest errors, so those processes can be improved and errors reduced.
Abstract
Complex-terrain locations often have repeatable near-surface wind patterns, such as synoptic gap flows and local thermally forced flows. An example is the Columbia River Valley in east-central Oregon–Washington, a significant wind energy generation region and the site of the Second Wind Forecast Improvement Project (WFIP2). Data from three Doppler lidars deployed during WFIP2 define and characterize summertime wind regimes and their large-scale contexts, and provide insight into NWP model errors by examining differences in the ability of a model [NOAA’s High-Resolution Rapid Refresh (HRRR version 1)] to forecast wind speed profiles for different flow regimes. Seven regimes were identified based on daily time series of the lidar-measured rotor-layer winds, which then suggested two broad categories. First, in three of the regimes the primary dynamic forcing was the large-scale pressure gradient. Second, in two other regimes the dominant forcing was the diurnal heating-cooling cycle (regional sea-breeze-type dynamics), including the marine intrusion previously described, which generates strong nocturnal winds over the region. For the large-scale pressure gradient regimes, HRRR had wind speed biases of ~1 m s−1 and RMSEs of 2–3 m s−1. Errors were much larger for the thermally forced regimes, owing to the premature demise of the strong nocturnal flow in HRRR. Thus, the more dominant the role of surface heating in generating the flow, the larger the errors. Major errors could result from surface heating of the atmosphere, boundary layer responses to that heating, and associated terrain interactions. Measurement/modeling research programs should be designed to determine which of these modeled processes produce the largest errors, so those processes can be improved and errors reduced.
Abstract
The Rapid Refresh (RAP), an hourly updated assimilation and model forecast system, replaced the Rapid Update Cycle (RUC) as an operational regional analysis and forecast system among the suite of models at the NOAA/National Centers for Environmental Prediction (NCEP) in 2012. The need for an effective hourly updated assimilation and modeling system for the United States for situational awareness and related decision-making has continued to increase for various applications including aviation (and transportation in general), severe weather, and energy. The RAP is distinct from the previous RUC in three primary aspects: a larger geographical domain (covering North America), use of the community-based Advanced Research version of the Weather Research and Forecasting (WRF) Model (ARW) replacing the RUC forecast model, and use of the Gridpoint Statistical Interpolation analysis system (GSI) instead of the RUC three-dimensional variational data assimilation (3DVar). As part of the RAP development, modifications have been made to the community ARW model (especially in model physics) and GSI assimilation systems, some based on previous model and assimilation design innovations developed initially with the RUC. Upper-air comparison is included for forecast verification against both rawinsondes and aircraft reports, the latter allowing hourly verification. In general, the RAP produces superior forecasts to those from the RUC, and its skill has continued to increase from 2012 up to RAP version 3 as of 2015. In addition, the RAP can improve on persistence forecasts for the 1–3-h forecast range for surface, upper-air, and ceiling forecasts.
Abstract
The Rapid Refresh (RAP), an hourly updated assimilation and model forecast system, replaced the Rapid Update Cycle (RUC) as an operational regional analysis and forecast system among the suite of models at the NOAA/National Centers for Environmental Prediction (NCEP) in 2012. The need for an effective hourly updated assimilation and modeling system for the United States for situational awareness and related decision-making has continued to increase for various applications including aviation (and transportation in general), severe weather, and energy. The RAP is distinct from the previous RUC in three primary aspects: a larger geographical domain (covering North America), use of the community-based Advanced Research version of the Weather Research and Forecasting (WRF) Model (ARW) replacing the RUC forecast model, and use of the Gridpoint Statistical Interpolation analysis system (GSI) instead of the RUC three-dimensional variational data assimilation (3DVar). As part of the RAP development, modifications have been made to the community ARW model (especially in model physics) and GSI assimilation systems, some based on previous model and assimilation design innovations developed initially with the RUC. Upper-air comparison is included for forecast verification against both rawinsondes and aircraft reports, the latter allowing hourly verification. In general, the RAP produces superior forecasts to those from the RUC, and its skill has continued to increase from 2012 up to RAP version 3 as of 2015. In addition, the RAP can improve on persistence forecasts for the 1–3-h forecast range for surface, upper-air, and ceiling forecasts.