Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jean O. Dickey x
  • All content x
Clear All Modify Search
Steven L. Marcus, Olivier de Viron, and Jean O. Dickey

Abstract

Atmospheric motions in the retrograde diurnal (S 1) band are of interest to a wide community of researchers in earth dynamics and geodesy, due to their potential contribution to the low-frequency motions of the rotation axis known as nutations. Previous studies of these effects have noted an order-of-magnitude discrepancy between estimates of atmosphere-induced nutation based on the torque and angular momentum approaches. In this note, angular momentum budgets computed from NCEP reanalysis data are examined in order to isolate the reasons for this discrepancy, and associated constraints on the atmospheric response to solar diurnal forcing are considered.

Full access
Jean O. Dickey, Steven L. Marcus, and Olivier de Viron

Abstract

Earth’s rotation rate [i.e., length of day (LOD)], the angular momentum of the core (CAM), and surface air temperature (SAT) all have decadal variability. Previous investigators have found that the LOD fluctuations are largely attributed to core–mantle interactions and that the SAT is strongly anticorrelated with the decadal LOD. It is shown here that 1) the correlation among these three quantities exists until 1930, at which time anthropogenic forcing becomes highly significant; 2) correcting for anthropogenic effects, the correlation is present for the full span with a broadband variability centered at 78 yr; and 3) this result underscores the reality of anthropogenic temperature change, its size, and its temporal growth. The cause of this common variability needs to be further investigated and studied. Since temperature cannot affect the CAM or LOD to a sufficient extent, the results favor either a direct effect of Earth’s core-generated magnetic field (e.g., through the modulation of charged-particle fluxes, which may impact cloud formation) or a more indirect effect of some other core process on the climate—or yet another process that affects both. In all three cases, their signals would be much smaller than the anthropogenic greenhouse gas effect on Earth’s radiation budget during the coming century.

Full access
Richard D. Rosen, David A. Salstein, Thomas Nehrkorn, Margaret R.P. McCalla, Alvin J. Miller, Jean O. Dickey, T. Marshall Eubanks, and J. Alan Steppe

Abstract

Forecasts of zonal wind fields produced by the medium-range forecast (MRF) model of the National Meteorological Center are used to create predictions of the atmosphere's angular momentum at lead times of 1–10 days. Forecasts of this globally integrated quantity are of interest to geodesists and others concerned with monitoring changes in the earth's orientation for navigational purposes. Based on momentum forecasts archived for the period December 1985–November 1986, we find that, on average, the MRF exhibits positive skill relative to persistence-based forecasts at all lead times. Over our entire one-year study period, the improvement over persistence exceeds 20% for 2–6-day forecasts and remains as large as 10% even for 10-day forecasts. On the other hand, skill scores for the MRF momentum predictions vary considerably from month to month, and for a sizeable fraction of our study period the MRF is less skillful than persistence. Thus, although our initial impression of the overall quality of the MRF momentum forecasts is favorable, further improvement is certainly desirable.

Full access