Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Jean-Francois Lamarque x
  • Refine by Access: All Content x
Clear All Modify Search
Jean-Francois Lamarque
and
Peter G. Hess

Abstract

To study stratosphere–troposphere exchange, an approach based on the nonconservation of potential vorticity (PV) is developed; this approach arises naturally if one defines the tropopause in terms of PV. The evolution of a tropopause fold simulated by a mesoscale model is studied, as well as the evolution of PV at the tropopause level. The PV framework also permits the identification of the physical processes responsible for the cross-tropopause exchange as either diffusive or diabatic. In this model simulation, the diabatic processes are found to be the most important in the exchange. In particular, it is found that the negative heating gradient in the region of the warm sector of the surface cyclone is responsible for most of the diabatic exchange across the tropopause.

The mass exchange during the tropopause folding event is estimated to be around 4.9 × 1014 kg in four days over the domain considered (1600 × 2000 km). This number is shown to correspond to the net difference between exchange from stratosphere to troposphere (23.5 × 1014 kg) and exchange from troposphere to stratosphere (18.6 × 1014 kg). Using the results from the exchange of a passive tracer, the exchange of ozone is estimated to be of the order of 1.1 × 108 kg. Finally, the origin of the air exchanged is found to be from the lower stratosphere and the upper troposphere, for the period of four days studied.

Full access
Jean-François Lamarque
and
Susan Solomon

Abstract

The primary focus of this paper is the analysis of the roles of long-term increases in carbon dioxide (CO2) and sea surface temperatures (used as indicators of climate change) and man-made halocarbons (indicators of chemical ozone depletion linked to halogens) in explaining the observed trend of ozone in the tropical lower stratosphere and implications for related variables including temperature and tropopause height. Published estimates indicate a decrease of approximately 10% in observed ozone concentrations in this region between 1979 and 2005. Using a coupled chemistry–climate atmosphere model forced by observed sea surface temperatures and surface concentrations of long-lived greenhouse gases and halocarbons, the authors show that the simulations display substantial decreases in tropical ozone that compare well in both latitudinal and vertical structure with those observed. Based on sensitivity simulations, the analysis indicates that the decreases in the lower stratospheric (85–50 hPa) tropical ozone distribution are mostly associated with increases in CO2 and sea surface temperatures, in contrast to those at higher latitudes, which are largely driven by halocarbon increases. Factors influencing temperature trends and tropopause heights in this region are also probed. It is shown that the modeled temperature trends in the lower tropical stratosphere are also associated with increases in CO2 and sea surface temperatures. Following the analysis of lower stratospheric tropical temperature trends, the secondary focus of this paper is on related changes in tropopause height. Much of the simulated tropopause rise in the tropical zone as measured by tropopause height is found to be linked to increases in sea surface temperatures and CO2, while increases in halocarbons dominate the tropopause height changes in the subtropics near 30°; both drivers thus affect different regions of the simulated changes in the position of the tropopause. Finally, it is shown that halocarbon increases dominate the changes in the width of the region where modeled total ozone displays tropical character (as indicated by low values of the column abundance). Hence the findings suggest that climate changes and halocarbon changes make different contributions to different metrics used to characterize tropical change.

Full access
Paul J. Young
,
David W. J. Thompson
,
Karen H. Rosenlof
,
Susan Solomon
, and
Jean-François Lamarque

Abstract

Previous studies have shown that lower-stratosphere temperatures display a near-perfect cancellation between tropical and extratropical latitudes on both annual and interannual time scales. The out-of-phase relationship between tropical and high-latitude lower-stratospheric temperatures is a consequence of variability in the strength of the Brewer–Dobson circulation (BDC). In this study, the signal of the BDC in stratospheric temperature variability is examined throughout the depth of the stratosphere using data from the Stratospheric Sounding Unit (SSU).

While the BDC has a seemingly modest signal in the annual cycle in zonal-mean temperatures in the mid- and upper stratosphere, it has a pronounced signal in the month-to-month and interannual variability. Tropical and extratropical temperatures are significantly negatively correlated in all SSU channels on interannual time scales, suggesting that variations in wave driving are a major factor controlling global-scale temperature variability not only in the lower stratosphere (as shown in previous studies), but also in the mid- and upper stratosphere. The out-of-phase relationship between tropical and high latitudes peaks at all levels during the cold-season months: December–March in the Northern Hemisphere and July–October in the Southern Hemisphere. In the upper stratosphere, the out-of-phase relationship with high-latitude temperatures extends beyond the tropics and well into the extratropics of the opposite hemisphere.

The seasonal cycle in stratospheric temperatures follows the annual march of insolation at all levels and latitudes except in the mid- to upper tropical stratosphere, where it is dominated by the semiannual oscillation. Mid- to upper-stratospheric temperatures also exhibit a distinct but small semiannual cycle at extratropical latitudes.

Full access
Salil Mahajan
,
Katherine J. Evans
,
John E. Truesdale
,
James J. Hack
, and
Jean-François Lamarque

Abstract

A new high-resolution global tropospheric aerosol dataset with monthly resolution is generated using version 4 of the Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the period 1961–2000 to identify tropospheric aerosol-induced interannual climate variations. The surface emissions dataset is constructed from phase 5 of the Coupled Model Intercomparison Project (CMIP5) decadal-resolution surface emissions dataset to include reanalysis of tropospheric chemical composition [40-yr Reanalysis of Tropospheric Chemical Composition (RETRO)] wildfire monthly emissions data. A four-member ensemble run is conducted using the spectral configuration of CAM4, forced with the new tropospheric aerosol dataset and prescribed with observed sea surface temperature, sea ice, and greenhouse gases. CAM4 only simulates the direct and semidirect effects of aerosols on the climate. The simulations reveal that variations in tropospheric aerosol levels can induce significant regional climate variability on the interannual time scales. Regression analyses over tropical Atlantic and Africa suggest that increasing dust aerosols can cool the North African landmass and shift convection southward from West Africa into the Gulf of Guinea in the spring season. Further, it is found that carbonaceous aerosols emanating from the southwestern African savannas can significantly cool the region and increase the marine stratocumulus cloud cover over the southeast tropical Atlantic Ocean by aerosol-induced diabatic heating of the free troposphere above the low clouds. Experiments conducted with CAM4 coupled to a slab ocean model suggest that present-day aerosols can cool the tropical North Atlantic and shift the intertropical convergence zone southward and can reduce the ocean mixed layer temperature beneath the increased marine stratocumulus clouds in the southeastern tropical Atlantic.

Full access
Sönke Zaehle
,
Chris D. Jones
,
Benjamin Houlton
,
Jean-Francois Lamarque
, and
Eddy Robertson

Abstract

Coupled carbon cycle–climate models in the Coupled Model Intercomparison Project, phase 5 (CMIP5), Earth system model ensemble simulate the effects of changes in anthropogenic fossil-fuel emissions and ensuing climatic changes on the global carbon (C) balance but largely ignore the consequences of widespread terrestrial nitrogen (N) limitation. Based on plausible ranges of terrestrial C:N stoichiometry, this study investigates whether the terrestrial C sequestration projections of nine CMIP5 models for four representative concentration pathways (RCPs) are consistent with estimates of N supply from increased biological fixation, atmospheric deposition, and reduced ecosystem N losses. Discrepancies between the timing and places of N demand and supply indicated increases in terrestrial N implicit to the projections of all nine CMIP5 models under all scenarios that are larger than the estimated N supply. Omitting N constraints leads to an overestimation of land C sequestration in these models between the years 1860 and 2100 by between 97 Pg C (69–252 Pg C; RCP 2.6) and 150 Pg C (57–323 Pg C; RCP 8.5), with a large spread across models. The CMIP5 models overestimated the average 2006–2100 fossil-fuel emissions required to keep atmospheric CO2 levels on the trajectories described in the RCP scenarios by between 0.6 Pg C yr−1 (0.4–2.2 Pg C yr−1; RCP 2.6) and 1.2 Pg C yr−1 (0.5–3.3 Pg C yr−1; RCP 8.5). If unabated, reduced land C sequestration would enhance CO2 accumulation in the ocean and atmosphere, increasing atmospheric CO2 burden by 26 ppm (16–88 ppm; RCP 2.6) to 61 ppm (29–147 ppm; RCP 8.5) by the year 2100.

Full access
Alexander V. Matus
,
Tristan S. L’Ecuyer
,
Jennifer E. Kay
,
Cecile Hannay
, and
Jean-Francois Lamarque

Abstract

Observational benchmarks of global and regional aerosol direct radiative effects, over all surfaces and all sky conditions, are generated using CloudSat’s new multisensor radiative fluxes and heating rates product. Improving upon previous techniques, the approach leverages the capability of CloudSat and CALIPSO to retrieve vertically resolved estimates of cloud and aerosol properties required for complete and accurate assessment of aerosol direct effects under all conditions. The global annually averaged aerosol direct radiative effect is estimated to be −1.9 W m−2 with an uncertainty range of ±0.6 W m−2, which is in better agreement with previously published estimates from global models than previous satellite-based estimates. Detailed comparisons against a fully coupled simulation of the Community Earth System Model, however, reveal that this agreement on the global annual mean masks large regional discrepancies between modeled and observed estimates of aerosol direct effects. A series of regional analyses demonstrate that, in addition to previously documented biases in simulated aerosol distributions, the magnitude and sign of these discrepancies are often related to model biases in the geographic and seasonal distribution of clouds. A low bias in stratocumulus cloud cover over the southeastern Pacific, for example, leads to an overestimate of the radiative effects of marine aerosols in the region. Likewise, errors in the seasonal cycle of low clouds in the southeastern Atlantic distort the radiative effects of biomass burning aerosols from southern Africa. These findings indicate that accurate assessment of aerosol direct effects requires models to correctly represent not only the source, strength, and optical properties of aerosols, but their relative proximity to clouds as well.

Full access
Paul J. Young
,
Karen H. Rosenlof
,
Susan Solomon
,
Steven C. Sherwood
,
Qiang Fu
, and
Jean-François Lamarque

Abstract

Seasonally and vertically resolved changes in the strength of the Brewer–Dobson circulation (BDC) were inferred using temperatures measured by the Microwave Sounding Unit (MSU), Stratospheric Sounding Unit (SSU), and radiosondes.

Linear trends in an empirically derived “BDC index” (extratropical minus tropical temperatures), over 1979–2005, were found to be consistent with a significant strengthening of the Northern Hemisphere (NH) branch of the BDC during December throughout the depth of the stratosphere. Trends in the same index suggest a significant strengthening of the Southern Hemisphere branch of the BDC during August through to the midstratosphere, as well as a significant weakening during March in the NH lower stratosphere. Such trends, however, are only significant if it is assumed that interannual variability due to the BDC can be removed by regression of the tropics against the extratropics and vice versa (i.e., exploiting the out-of-phase nature of tropical and extratropical temperatures as demonstrated by previous studies of temperature and the BDC).

The possibility that the apparent lower-stratosphere BDC December strengthening and March weakening could point to a change in the seasonal cycle of the circulation is also explored. The differences between a 1979–91 average and 1995–2005 average tropical temperature seasonal cycle in lower-stratospheric MSU data show an apparent shift in the minimum from February to January, consistent with a change in the timing of the maximum wave driving. Additionally, the importance of decadal variability in shaping the overall trends is highlighted, in particular for the suggested March BDC weakening, which may now be strengthening from a minimum in the 1990s.

Full access
Daniel R. Marsh
,
Michael J. Mills
,
Douglas E. Kinnison
,
Jean-Francois Lamarque
,
Natalia Calvo
, and
Lorenzo M. Polvani

Abstract

The NCAR Community Earth System Model (CESM) now includes an atmospheric component that extends in altitude to the lower thermosphere. This atmospheric model, known as the Whole Atmosphere Community Climate Model (WACCM), includes fully interactive chemistry, allowing, for example, a self-consistent representation of the development and recovery of the stratospheric ozone hole and its effect on the troposphere. This paper focuses on analysis of an ensemble of transient simulations using CESM1(WACCM), covering the period from the preindustrial era to present day, conducted as part of phase 5 of the Coupled Model Intercomparison Project. Variability in the stratosphere, such as that associated with stratospheric sudden warmings and the development of the ozone hole, is in good agreement with observations. The signals of these phenomena propagate into the troposphere, influencing near-surface winds, precipitation rates, and the extent of sea ice. In comparison of tropospheric climate change predictions with those from a version of CESM that does not fully resolve the stratosphere, the global-mean temperature trends are indistinguishable. However, systematic differences do exist in other climate variables, particularly in the extratropics. The magnitude of the difference can be as large as the climate change response itself. This indicates that the representation of stratosphere–troposphere coupling could be a major source of uncertainty in climate change projections in CESM.

Full access
Isla R. Simpson
,
Nan Rosenbloom
,
Gokhan Danabasoglu
,
Clara Deser
,
Stephen G. Yeager
,
Christina S. McCluskey
,
Ryohei Yamaguchi
,
Jean-Francois Lamarque
,
Simone Tilmes
,
Michael J. Mills
, and
Keith B. Rodgers

Abstract

Single-forcing large ensembles are a relatively new tool for quantifying the contributions of different anthropogenic and natural forcings to the historical and future projected evolution of the climate system. This study introduces a new single-forcing large ensemble with the Community Earth System Model, version 2 (CESM2), which can be used to separate the influences of greenhouse gases, anthropogenic aerosols, biomass burning aerosols, and all remaining forcings on the evolution of the Earth system from 1850 to 2050. Here, the forced responses of global near-surface temperature and associated drivers are examined in CESM2 and compared with those in a single-forcing large ensemble with CESM2’s predecessor, CESM1. The experimental design, the imposed forcing, and the model physics all differ between the CESM1 and CESM2 ensembles. In CESM1, an “all-but-one” approach was used whereby everything except the forcing of interest is time evolving, while in CESM2 an “only” approach is used, whereby only the forcing of interest is time evolving. This experimental design choice is shown to matter considerably for anthropogenic aerosol-forced change in CESM2, due to state dependence of cryospheric albedo feedbacks and nonlinearity in the Atlantic meridional overturning circulation (AMOC) response to forcing. This impact of experimental design is, however, strongly dependent on the model physics and/or the imposed forcing, as the same sensitivity to experimental design is not found in CESM1, which appears to be an inherently less nonlinear model in both its AMOC behavior and cryospheric feedbacks.

Free access
Gerald A. Meehl
,
Warren M. Washington
,
Julie M. Arblaster
,
Aixue Hu
,
Haiyan Teng
,
Claudia Tebaldi
,
Benjamin N. Sanderson
,
Jean-Francois Lamarque
,
Andrew Conley
,
Warren G. Strand
, and
James B. White III

Abstract

Results are presented from experiments performed with the Community Climate System Model, version 4 (CCSM4) for the Coupled Model Intercomparison Project phase 5 (CMIP5). These include multiple ensemble members of twentieth-century climate with anthropogenic and natural forcings as well as single-forcing runs, sensitivity experiments with sulfate aerosol forcing, twenty-first-century representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100–2300. Equilibrium climate sensitivity of CCSM4 is 3.20°C, and the transient climate response is 1.73°C. Global surface temperatures averaged for the last 20 years of the twenty-first century compared to the 1986–2005 reference period for six-member ensembles from CCSM4 are +0.85°, +1.64°, +2.09°, and +3.53°C for RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. The ocean meridional overturning circulation (MOC) in the Atlantic, which weakens during the twentieth century in the model, nearly recovers to early twentieth-century values in RCP2.6, partially recovers in RCP4.5 and RCP6, and does not recover by 2100 in RCP8.5. Heat wave intensity is projected to increase almost everywhere in CCSM4 in a future warmer climate, with the magnitude of the increase proportional to the forcing. Precipitation intensity is also projected to increase, with dry days increasing in most subtropical areas. For future climate, there is almost no summer sea ice left in the Arctic in the high RCP8.5 scenario by 2100, but in the low RCP2.6 scenario there is substantial sea ice remaining in summer at the end of the century.

Full access