Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: Jean-Marc Molines x
  • All content x
Clear All Modify Search
Julien Jouanno, Frédéric Marin, Yves du Penhoat, and Jean-Marc Molines

Abstract

A regional numerical model of the tropical Atlantic Ocean and observations are analyzed to investigate the intraseasonal fluctuations of the sea surface temperature at the equator in the Gulf of Guinea. Results indicate that the seasonal cooling in this region is significantly shaped by short-duration cooling events caused by wind-forced equatorial waves: mixed Rossby–gravity waves within the 12–20-day period band, inertia–gravity waves with periods below 11 days, and equatorially trapped Kelvin waves with periods between 25 and 40 days. In these different ranges of frequencies, it is shown that the wave-induced horizontal oscillations of the northern front of the mean cold tongue dominate the variations of mixed layer temperature near the equator. But the model mixed layer heat budget also shows that the equatorial waves make a significant contribution to the mixed layer heat budget through modulation of the turbulent cooling, especially above the core of the Equatorial Undercurrent (EUC). The turbulent cooling variability is found to be mainly controlled by the intraseasonal modulation of the vertical shear in the upper ocean. This mechanism is maximum during periods of seasonal cooling, especially in boreal summer, when the surface South Equatorial Current is strongest and between 2°S and the equator, where the presence of the EUC provides a background vertical shear in the upper ocean. It applies for the three types of intraseasonal waves. Inertia–gravity waves also modulate the turbulent heat flux at the equator through vertical displacement of the core of the EUC in response to equatorial divergence and convergence.

Full access
Guillaume Sérazin, Thierry Penduff, Sandy Grégorio, Bernard Barnier, Jean-Marc Molines, and Laurent Terray

Abstract

In high-resolution ocean general circulation models (OGCMs), as in process-oriented models, a substantial amount of interannual to decadal variability is generated spontaneously by oceanic nonlinearities: that is, without any variability in the atmospheric forcing at these time scales. The authors investigate the temporal and spatial scales at which this intrinsic oceanic variability has the strongest imprints on sea level anomalies (SLAs) using a ° global OGCM, by comparing a “hindcast” driven by the full range of atmospheric time scales with its counterpart forced by a repeated climatological atmospheric seasonal cycle. Outputs from both simulations are compared within distinct frequency–wavenumber bins. The fully forced hindcast is shown to reproduce the observed distribution and magnitude of low-frequency SLA variability very accurately. The small-scale (L < 6°) SLA variance is, at all time scales, barely sensitive to atmospheric variability and is almost entirely of intrinsic origin. The high-frequency (mesoscale) part and the low-frequency part of this small-scale variability have almost identical geographical distributions, supporting the hypothesis of a nonlinear temporal inverse cascade spontaneously transferring kinetic energy from high to low frequencies. The large-scale (L > 12°) low-frequency variability is mostly related to the atmospheric variability over most of the global ocean, but it is shown to remain largely intrinsic in three eddy-active regions: the Gulf Stream, Kuroshio, and Antarctic Circumpolar Current (ACC). Compared to its ¼° predecessor, the authors’ ° OGCM is shown to yield a stronger intrinsic SLA variability, at both mesoscale and low frequencies.

Full access
Julien Jouanno, Frédéric Marin, Yves du Penhoat, Jean Marc Molines, and Julio Sheinbaum

Abstract

A numerical simulation of the tropical Atlantic Ocean indicates that surface cooling in upwelling zones of the Gulf of Guinea is mostly due to vertical mixing. At the seasonal scale, the spatial structure and the time variability of the northern and southern branches of the South Equatorial Current (SEC), and of the Guinea Current, are correlated with the timing and distribution of turbulent heat fluxes in the Gulf of Guinea. Through modulation of the velocity shear at the subsurface, these surface currents control the vertical turbulent exchanges, bringing cold and nutrient-rich waters to the surface. This mechanism explains the seasonality and spatial distribution of surface chlorophyll concentrations better than the generally accepted hypothesis that thermocline movements control the nutrient flux. The position of the southern SEC explains why the cold tongue and high chlorophyll concentrations extend from the equator to 4°S in the southeastern part of the basin.

Full access
Angélique Melet, Lionel Gourdeau, William S. Kessler, Jacques Verron, and Jean-Marc Molines

Abstract

In the southwest Pacific, thermocline waters connecting the tropics to the equator via western boundary currents (WBCs) transit through the Solomon Sea. Despite its importance in feeding the Equatorial Undercurrent (EUC) and its related potential influence on the low-frequency modulation of ENSO, the circulation inside the Solomon Sea is poorly documented. A model has been implemented to analyze the mean and the seasonal variability of the Solomon Sea thermocline circulation. The circulation involves an inflow from the open southern Solomon Sea, which is distributed via WBCs between the three north exiting straits of the semiclosed Solomon Sea. The system of WBCs is found to be complex. Its main feature, the New Guinea Coastal Undercurrent, splits in two branches: one flowing through Vitiaz Strait and the other one, the New Britain Coastal Undercurrent (NBCU), exiting at Solomon Strait. East of the Solomon Sea, the encounter of the South Equatorial Current (SEC) with the Solomon Islands forms a previously unknown current, which the authors call the Solomon Islands Coastal Undercurrent (SICU). The NBCU, SEC, and SICU participate in the feeding of the New Ireland Coastal Undercurrent (NICU), which retroflects to the Equatorial Undercurrent, providing the most direct western boundary EUC connection, which is particularly active in June–August. The Solomon Sea WBC seasonal variability results from the combination of equatorial dynamics, remotely forced Rossby waves north of 10°S, and the spinup and spindown of the subtropical gyre as a response of Rossby waves forced south of 10°S.

Full access
Arne Biastoch, Claus W. Böning, Julia Getzlaff, Jean-Marc Molines, and Gurvan Madec

Abstract

The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–1/12°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.

Full access
Sergey K. Gulev, Bernard Barnier, Herve Knochel, Jean-Marc Molines, and Melanie Cottet

Abstract

Decadal-scale climate variability in the North Atlantic thermohaline circulation is simulated using a sigma-coordinate primitive equation model, forced by NCEP–NCAR reanalysis surface forcing fields for the period from 1958 to 1997. Surface heat and freshwater flux are expressed in terms of surface thermal and haline density inputs, diagnosed by the model. Variability in surface density fluxes is closely correlated with the North Atlantic Oscillation and demonstrates differences with the original surface heat and freshwater fluxes. Leading modes of surface water mass transformation are considered in the TS plane. They identify decadal-scale variability associated with the transformation of the Labrador Sea Waters and Subtropical Mode Waters. Analysis of the model responses to the surface forcing shows an immediate reaction of meridional heat transport to the wind stress curl, resulting in a decrease of meridional heat transport at 48°N and an increase in the subtropics. Delayed baroclinic responses to the surface heat forcing are identified at time lags of 3 and 7 yr. The 3-yr response is represented by an increase in the total meridional heat transport in subpolar latitudes and its simultaneous increase in the Tropics and midlatitudes. The 7-yr delayed response to the surface heat forcing is associated with the strengthening of meridional heat transport at all latitudes. However, 7-yr responses may be influenced by the self-correlation in the meridional heat transport and forcing function. Meridional overturning is largely responsible for the variability observed, demonstrating high correlation with meridional heat transport.

Full access
Julien Jouanno, Julio Sheinbaum, Bernard Barnier, Jean Marc Molines, and Julio Candela

Abstract

Variability of the mesoscale eddy field in the Caribbean Sea is analyzed over the period 1993–2009 using geostrophic anomalies derived from altimeter data and a high-resolution regional model. The Colombia Basin presents the largest values of eddy kinetic energy (EKE) and its semiannual cycle, with a main peak in August–October and a secondary peak in February–March, is the dominant feature in the whole Caribbean EKE cycle. The analysis of energy conversion terms between low-frequency currents and eddies explains these peaks by enhanced baroclinic and barotropic instabilities, in response to seasonally varying currents in the region of the Guajira Peninsula. The semiannual acceleration of the atmospheric Caribbean low-level jet intensifies the southern Caribbean Current (sCC) twice a year in this region, together with its vertical and horizontal velocity shears. The asymmetry of the EKE seasonal cycle in the Colombia Basin is explained by a summer peak in the annual cycle of the whole sCC. Numerical results suggest that the arrival of more energetic North Brazil Current rings during part of the year have almost no impact on the seasonal cycle of EKE in the Colombia Basin. Instead, they are shown to contribute, together with the annual cycle of the Caribbean inflow through the southern passages of the Lesser Antilles, to an annual peak of EKE in the Venezuela Basin between May and August. At the interannual scale the mechanism is similar: interannual variability of the alongshore wind stress controls the speed of the southern Caribbean Current and the energy of the eddies in the Colombia Basin through instability.

Full access
Jérôme Chanut, Bernard Barnier, William Large, Laurent Debreu, Thierry Penduff, Jean Marc Molines, and Pierre Mathiot

Abstract

The cycle of open ocean deep convection in the Labrador Sea is studied in a realistic, high-resolution (4 km) regional model, embedded in a coarser (⅓°) North Atlantic setup. This configuration allows the simultaneous generation and evolution of three different eddy types that are distinguished by their source region, generation mechanism, and dynamics. Very energetic Irminger Rings (IRs) are generated by barotropic instability of the West Greenland and Irminger Currents (WGC/IC) off Cape Desolation and are characterized by a warm, salty subsurface core. They densely populate the basin north of 58°N, where their eddy kinetic energy (EKE) matches the signal observed by satellite altimetry. Significant levels of EKE are also found offshore of the West Greenland and Labrador coasts, where boundary current eddies (BCEs) are spawned by weakly energetic instabilities all along the boundary current system (BCS). Baroclinic instability of the steep isopycnal slopes that result from a deep convective overturning event produces convective eddies (CEs) of 20–30 km in diameter, as observed and produced in more idealized models, with a distinct seasonal cycle of EKE peaking in April. Sensitivity experiments show that each of these eddy types plays a distinct role in the heat budget of the central Labrador Sea, hence in the convection cycle.

As observed in nature, deep convective mixing is limited to areas where adequate preconditioning can occur, that is, to a small region in the southwestern quadrant of the central basin. To the east, west, and south, BCEs flux heat from the BCS at a rate sufficient to counteract air–sea buoyancy loss. To the north, this eddy flux alone is not enough, but when combined with the effects of Irminger Rings, preconditioning is effectively inhibited here too. Following a deep convective mixing event, the homogeneous convection patch reaches as deep as 2000 m and a horizontal scale on the order of 200 km, as has been observed. Both CEs and BCEs are found to play critical roles in the lateral mixing phase, when the patch restratifies and transforms into Labrador Sea Water (LSW). BCEs extract the necessary heat from the BCS and transport it to the deep convection site, where it fluxed into convective patches by CEs during the initial phase. Later in the phase, BCE heat flux maintains and strengthens the restratification throughout the column, while solar heating establishes a near-surface seasonal stratification. In contrast, IRs appear to rarely enter the deep convection region. However, by virtue of their control on the surface area preconditioned for deep convection and the interannual variability of the associated barotropic instability, they could have an important role in the variability of LSW.

Full access
Sandy Grégorio, Thierry Penduff, Guillaume Sérazin, Jean-Marc Molines, Bernard Barnier, and Joël Hirschi

Abstract

The low-frequency variability of the Atlantic meridional overturning circulation (AMOC) is investigated from 2, ¼°, and ° global ocean–sea ice simulations, with a specific focus on its internally generated (i.e., “intrinsic”) component. A 327-yr climatological ¼° simulation, driven by a repeated seasonal cycle (i.e., a forcing devoid of interannual time scales), is shown to spontaneously generate a significant fraction R of the interannual-to-decadal AMOC variance obtained in a 50-yr “fully forced” hindcast (with reanalyzed atmospheric forcing including interannual time scales). This intrinsic variance fraction R slightly depends on whether AMOCs are computed in geopotential or density coordinates, and on the period considered in the climatological simulation, but the following features are quite robust when mesoscale eddies are simulated (at both ¼° and ° resolutions); R barely exceeds 5%–10% in the subpolar gyre but reaches 30%–50% at 34°S, up to 20%–40% near 25°N, and 40%–60% near the Gulf Stream. About 25% of the meridional heat transport interannual variability is attributed to intrinsic processes at 34°S and near the Gulf Stream. Fourier and wavelet spectra, built from the 327-yr ¼° climatological simulation, further indicate that spectral peaks of intrinsic AMOC variability (i) are found at specific frequencies ranging from interannual to multidecadal, (ii) often extend over the whole meridional scale of gyres, (iii) stochastically change throughout these 327 yr, and (iv) sometimes match the spectral peaks found in the fully forced hindcast in the North Atlantic. Intrinsic AMOC variability is also detected at multidecadal time scales, with a marked meridional coherence between 35°S and 25°N (15–30 yr periods) and throughout the whole basin (50–90-yr periods).

Full access
Guillaume Sérazin, Thierry Penduff, Bernard Barnier, Jean-Marc Molines, Brian K. Arbic, Malte Müller, and Laurent Terray

Abstract

A seasonally forced 1/12° global ocean/sea ice simulation is used to characterize the spatiotemporal inverse cascade of kinetic energy (KE). Nonlinear scale interactions associated with relative vorticity advection are evaluated using cross-spectral analysis in the frequency–wavenumber domain from sea level anomaly (SLA) time series. This analysis is applied within four eddy-active midlatitude regions having large intrinsic variability spread over a wide range of scales. Over these four regions, mesoscale surface KE is shown to spontaneously cascade toward larger spatial scales—between the deformation scale and the Rhines scale—and longer time scales (possibly exceeding 10 years). Other nonlinear processes might have to be invoked to explain the longer time scales of intrinsic variability, which have a substantial surface imprint at midlatitudes. The analysis of a fully forced 1/12° hindcast shows that low-frequency and synoptic atmospheric forcing barely affects this inverse KE cascade. The inverse cascade is also at work in a 1/4° simulation, albeit with a weaker intensity, consistent with the weaker intrinsic variability found at this coarser resolution. In the midlatitude North Pacific, the spatiotemporal cascade transfers KE from high-frequency frontal Rossby waves (FRWs), probably generated by baroclinic instability, toward the lower-frequency, westward-propagating mesoscale eddy (WME) field. The WMEs provide local gradients of potential vorticity that support these short Doppler-shifted FRWs. FRWs have periods shorter than 2 months and might be subsampled by altimetric observations, perhaps explaining why the temporal inverse cascade deduced from high-resolution models and mapped altimeter products can be quite different. The nature of the nonlinear interactions between FRWs and WMEs remains unclear but might involve wave turbulence processes.

Full access