Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: Jean-Yves Grandpeix x
- Refine by Access: All Content x
Abstract
The aim of the present series of papers is to develop a density current parameterization for global circulation models. This first paper is devoted to the presentation of this new wake parameterization coupled with Emanuel’s convective scheme. The model represents a population of identical circular cold pools (the wakes) with vertical frontiers. The wakes are cooled by the precipitating downdrafts while the outside area is warmed by the subsidence induced by the saturated drafts. The budget equations for mass, energy, and water yield evolution equations for the prognostic variables (the vertical profiles of the temperature and humidity differences between the wakes and their exterior). They also provide additional terms for the equations of the mean variables. The driving terms of the wake equations are the differential heating and drying due to convective drafts. The action of the convection on the wakes is implemented by splitting the convective tendency and attributing the effect of the precipitating downdrafts to the wake region and the effect of the saturated drafts to their exterior. Conversely, the action of the wakes on convection is implemented by introducing two new variables representing the convergence at the leading edge of the wakes. The available lifting energy (ALE) determines the triggers of deep convection: convection occurs when ALE exceeds the convective inhibition. The available lifting power (ALP) determines the intensity of convection; it is equal to the power input into the system by the collapse of the wakes. The ALE/ALP closure, together with the splitting of the convective heating and drying, implements the full coupling between wake and convection. The coupled wake–convection scheme thus created makes it possible to represent the moist convective processes more realistically, to prepare the coupling of convection with boundary layer and orographic processes, and to consider simulating the propagation of convective systems.
Abstract
The aim of the present series of papers is to develop a density current parameterization for global circulation models. This first paper is devoted to the presentation of this new wake parameterization coupled with Emanuel’s convective scheme. The model represents a population of identical circular cold pools (the wakes) with vertical frontiers. The wakes are cooled by the precipitating downdrafts while the outside area is warmed by the subsidence induced by the saturated drafts. The budget equations for mass, energy, and water yield evolution equations for the prognostic variables (the vertical profiles of the temperature and humidity differences between the wakes and their exterior). They also provide additional terms for the equations of the mean variables. The driving terms of the wake equations are the differential heating and drying due to convective drafts. The action of the convection on the wakes is implemented by splitting the convective tendency and attributing the effect of the precipitating downdrafts to the wake region and the effect of the saturated drafts to their exterior. Conversely, the action of the wakes on convection is implemented by introducing two new variables representing the convergence at the leading edge of the wakes. The available lifting energy (ALE) determines the triggers of deep convection: convection occurs when ALE exceeds the convective inhibition. The available lifting power (ALP) determines the intensity of convection; it is equal to the power input into the system by the collapse of the wakes. The ALE/ALP closure, together with the splitting of the convective heating and drying, implements the full coupling between wake and convection. The coupled wake–convection scheme thus created makes it possible to represent the moist convective processes more realistically, to prepare the coupling of convection with boundary layer and orographic processes, and to consider simulating the propagation of convective systems.
Abstract
The concept of feedback has been used by several authors in the field of climate science to describe the behavior of models and to assess the importance of the different mechanisms at stake. Here, a simple 1D model of climate has been built to analyze the water vapor feedback. Beyond a static quantification of the water feedback, a more general formal definition of feedback gain based on the tangent linear system is introduced. This definition reintroduces the dynamical aspect of the system response to perturbation from Bode's original concept.
In the model here, it is found that, even though the water vapor static gain proves consistent with results from GCMs, it turns out to be negative for time scales below 4 yr and positive only for longer time scales. These results suggest two conclusions: (i) that the water vapor feedback may be fully active only in response to long-lived perturbations; and (ii) that the water vapor feedback could reduce the natural variability due to tropospheric temperature perturbations over short time scales, while enhancing it over longer time scales. This second conclusion would be consistent with studies investigating the influence of air–sea coupling on variability on different time scales.
Abstract
The concept of feedback has been used by several authors in the field of climate science to describe the behavior of models and to assess the importance of the different mechanisms at stake. Here, a simple 1D model of climate has been built to analyze the water vapor feedback. Beyond a static quantification of the water feedback, a more general formal definition of feedback gain based on the tangent linear system is introduced. This definition reintroduces the dynamical aspect of the system response to perturbation from Bode's original concept.
In the model here, it is found that, even though the water vapor static gain proves consistent with results from GCMs, it turns out to be negative for time scales below 4 yr and positive only for longer time scales. These results suggest two conclusions: (i) that the water vapor feedback may be fully active only in response to long-lived perturbations; and (ii) that the water vapor feedback could reduce the natural variability due to tropospheric temperature perturbations over short time scales, while enhancing it over longer time scales. This second conclusion would be consistent with studies investigating the influence of air–sea coupling on variability on different time scales.
Abstract
Since the 1970s, results from radiative transfer models unambiguously show that an increase in the carbon dioxide (CO2) concentration leads to an increase of the greenhouse effect. However, this robust result is often misunderstood and often questioned. A common argument is that the CO2 greenhouse effect is saturated (i.e., does not increase) as CO2 absorption of an entire atmospheric column, named absorptivity, is saturated. This argument is erroneous first because absorptivity by CO2 is currently not fully saturated and still increases with CO2 concentration and second because a change in emission height explains why the greenhouse effect may increase even if the absorptivity is saturated. However, these explanations are only qualitative. In this article, we first propose a way of quantifying the effects of both the emission height and absorptivity and we illustrate which one of the two dominates for a suite of simple idealized atmospheres. Then, using a line-by-line model and a representative standard atmospheric profile, we show that the increase of the greenhouse effect resulting from an increase of CO2 from its current value is primarily due (about 90%) to the change in emission height. For an increase of water vapor, the change in absorptivity plays a more important role (about 40%) but the change in emission height still has the largest contribution (about 60%).
Abstract
Since the 1970s, results from radiative transfer models unambiguously show that an increase in the carbon dioxide (CO2) concentration leads to an increase of the greenhouse effect. However, this robust result is often misunderstood and often questioned. A common argument is that the CO2 greenhouse effect is saturated (i.e., does not increase) as CO2 absorption of an entire atmospheric column, named absorptivity, is saturated. This argument is erroneous first because absorptivity by CO2 is currently not fully saturated and still increases with CO2 concentration and second because a change in emission height explains why the greenhouse effect may increase even if the absorptivity is saturated. However, these explanations are only qualitative. In this article, we first propose a way of quantifying the effects of both the emission height and absorptivity and we illustrate which one of the two dominates for a suite of simple idealized atmospheres. Then, using a line-by-line model and a representative standard atmospheric profile, we show that the increase of the greenhouse effect resulting from an increase of CO2 from its current value is primarily due (about 90%) to the change in emission height. For an increase of water vapor, the change in absorptivity plays a more important role (about 40%) but the change in emission height still has the largest contribution (about 60%).
Abstract
The density current parameterization coupled with Emanuel’s convection scheme, described in of this series of papers, is tested in a single-column framework for continental and maritime convective systems. The case definitions and reference simulations are provided by cloud-resolving models (CRMs). For both cases, the wake scheme yields cold pools with temperature and humidity differences relative to the environment in reasonable agreement with observations (with wake depth on the order of 2 km over land and 1 km over ocean). The coupling with the convection scheme yields convective heating, drying, and precipitation similar to those simulated by the CRM. Thus, the representation of the action of the wakes on convection in terms of available lifting energy (ALE) and available lifting power (ALP) appears satisfactory. The sensitivity of the wake–convection system to the basic parameters of the parameterization is widely explored. A range of values for each parameter is recommended to help with implementing the scheme in a full-fledged general circulation model.
Abstract
The density current parameterization coupled with Emanuel’s convection scheme, described in of this series of papers, is tested in a single-column framework for continental and maritime convective systems. The case definitions and reference simulations are provided by cloud-resolving models (CRMs). For both cases, the wake scheme yields cold pools with temperature and humidity differences relative to the environment in reasonable agreement with observations (with wake depth on the order of 2 km over land and 1 km over ocean). The coupling with the convection scheme yields convective heating, drying, and precipitation similar to those simulated by the CRM. Thus, the representation of the action of the wakes on convection in terms of available lifting energy (ALE) and available lifting power (ALP) appears satisfactory. The sensitivity of the wake–convection system to the basic parameters of the parameterization is widely explored. A range of values for each parameter is recommended to help with implementing the scheme in a full-fledged general circulation model.
Abstract
This paper presents a stochastic triggering parameterization for deep convection and its implementation in the latest standard version of the Laboratoire de Météorologie Dynamique–Zoom (LMDZ) general circulation model: LMDZ5B. The derivation of the formulation of this parameterization and the justification, based on large-eddy simulation results, for the main hypothesis was proposed in Part I of this study.
Whereas the standard triggering formulation in LMDZ5B relies on the maximum vertical velocity within a mean bulk thermal, the new formulation presented here (i) considers a thermal size distribution instead of a bulk thermal, (ii) provides a statistical lifting energy at cloud base, (iii) proposes a three-step trigger (appearance of clouds, inhibition crossing, and exceeding of a cross-section threshold), and (iv) includes a stochastic component.
Here the complete implementation is presented, with its coupling to the thermal model used to treat shallow convection in LMDZ5B. The parameterization is tested over various cases in a single-column model framework. A sensitivity study to each parameter introduced is also carried out. The impact of the new triggering is then evaluated in the single-column version of LMDZ on several case studies and in full 3D simulations.
It is found that the new triggering (i) delays deep convection triggering, (ii) suppresses it over oceanic trade wind cumulus zones, (iii) increases the low-level cloudiness, and (iv) increases the convective variability. The scale-aware nature of this parameterization is also discussed.
Abstract
This paper presents a stochastic triggering parameterization for deep convection and its implementation in the latest standard version of the Laboratoire de Météorologie Dynamique–Zoom (LMDZ) general circulation model: LMDZ5B. The derivation of the formulation of this parameterization and the justification, based on large-eddy simulation results, for the main hypothesis was proposed in Part I of this study.
Whereas the standard triggering formulation in LMDZ5B relies on the maximum vertical velocity within a mean bulk thermal, the new formulation presented here (i) considers a thermal size distribution instead of a bulk thermal, (ii) provides a statistical lifting energy at cloud base, (iii) proposes a three-step trigger (appearance of clouds, inhibition crossing, and exceeding of a cross-section threshold), and (iv) includes a stochastic component.
Here the complete implementation is presented, with its coupling to the thermal model used to treat shallow convection in LMDZ5B. The parameterization is tested over various cases in a single-column model framework. A sensitivity study to each parameter introduced is also carried out. The impact of the new triggering is then evaluated in the single-column version of LMDZ on several case studies and in full 3D simulations.
It is found that the new triggering (i) delays deep convection triggering, (ii) suppresses it over oceanic trade wind cumulus zones, (iii) increases the low-level cloudiness, and (iv) increases the convective variability. The scale-aware nature of this parameterization is also discussed.
Abstract
This paper proposes a new formulation of the deep convection triggering for general circulation model convective parameterizations. This triggering is driven by evolving properties of the strongest boundary layer thermals. To investigate this, a statistical analysis of large-eddy simulation cloud fields in a case of transition from shallow to deep convection over a semiarid land is carried out at different stages of the transition from shallow to deep convection. Based on the dynamical and geometrical properties at cloud base, a new computation of the triggering is first proposed. The analysis of the distribution law of the maximum size of the thermals suggests that, in addition to this necessary condition, another triggering condition is required, that is, that this maximum horizontal size should exceed a certain threshold. This is explicitly represented stochastically. Therefore, the new formulation integrates the whole transition process from the first cloud to the first deep convective cell and can be decomposed into three steps: (i) the appearance of clouds, (ii) crossing of the inhibition layer, and (iii) deep convection triggering.
Abstract
This paper proposes a new formulation of the deep convection triggering for general circulation model convective parameterizations. This triggering is driven by evolving properties of the strongest boundary layer thermals. To investigate this, a statistical analysis of large-eddy simulation cloud fields in a case of transition from shallow to deep convection over a semiarid land is carried out at different stages of the transition from shallow to deep convection. Based on the dynamical and geometrical properties at cloud base, a new computation of the triggering is first proposed. The analysis of the distribution law of the maximum size of the thermals suggests that, in addition to this necessary condition, another triggering condition is required, that is, that this maximum horizontal size should exceed a certain threshold. This is explicitly represented stochastically. Therefore, the new formulation integrates the whole transition process from the first cloud to the first deep convective cell and can be decomposed into three steps: (i) the appearance of clouds, (ii) crossing of the inhibition layer, and (iii) deep convection triggering.
The African Monsoon Multidisciplinary Analyses-Model Intercomparison Project (AMMA-MIP) was developed within the framework of the AMMA project. It is a relatively light intercomparison and evaluation exercise of both global and regional atmospheric models, focused on the study of the seasonal and intraseasonal variations of the climate and rainfall over the Sahel. Taking advantage of the relative zonal symmetry of the West African climate, one major target of the exercise is the documentation of a meridional cross section made of zonally averaged (10°W–10°E) outputs. This paper presents the motivations and design of the exercise, and it discusses preliminary results and further extensions of the project.
The African Monsoon Multidisciplinary Analyses-Model Intercomparison Project (AMMA-MIP) was developed within the framework of the AMMA project. It is a relatively light intercomparison and evaluation exercise of both global and regional atmospheric models, focused on the study of the seasonal and intraseasonal variations of the climate and rainfall over the Sahel. Taking advantage of the relative zonal symmetry of the West African climate, one major target of the exercise is the documentation of a meridional cross section made of zonally averaged (10°W–10°E) outputs. This paper presents the motivations and design of the exercise, and it discusses preliminary results and further extensions of the project.