Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Jennifer Fletcher x
  • All content x
Clear All Modify Search
Jennifer Fletcher, Shannon Mason, and Christian Jakob

Abstract

A comparison of marine cold air outbreaks (MCAOs) in the Northern and Southern Hemispheres is presented, with attention to their seasonality, frequency of occurrence, and strength as measured by a cold air outbreak index. When considered on a gridpoint-by-gridpoint basis, MCAOs are more severe and more frequent in the Northern Hemisphere (NH) than the Southern Hemisphere (SH) in winter. However, when MCAOs are viewed as individual events regardless of horizontal extent, they occur more frequently in the SH. This is fundamentally because NH MCAOs are larger and stronger than those in the SH. MCAOs occur throughout the year, but in warm seasons and in the SH they are smaller and weaker than in cold seasons and in the NH. In both hemispheres, strong MCAOs occupy the cold air sector of midlatitude cyclones, which generally appear to be in their growth phase. Weak MCAOs in the SH occur under generally zonal flow with a slight northward component associated with weak zonal pressure gradients, while weak NH MCAOs occur under such a wide range of conditions that no characteristic synoptic pattern emerges from compositing. Strong boundary layer deepening, warming, and moistening occur as a result of the surface heat fluxes within MCAOs.

Full access
Jennifer K. Fletcher and Christopher S. Bretherton

Abstract

High-resolution three-dimensional cloud resolving model simulations of deep cumulus convection under a wide range of large-scale forcings are used to evaluate a mass flux closure based on boundary layer convective inhibition (CIN) that has previously been applied in parameterizations of shallow cumulus convection. With minor modifications, it is also found to perform well for deep oceanic and continental cumulus convection, and it matches simulated cloud-base mass flux much better than a closure based only on the boundary layer convective velocity scale. CIN closure maintains an important feedback among cumulus base mass flux, compensating subsidence, and CIN that keeps the boundary layer top close to cloud base. For deep convection, the proposed CIN closure requires prediction of a boundary layer mean turbulent kinetic energy (TKE) and a horizontal moisture variance, both of which are strongly correlated with precipitation. For our cases, CIN closure predicts cloud-base mass flux in deep convective environments as well as the best possible bulk entraining CAPE closure, but unlike the latter, CIN closure also works well for shallow cumulus convection without retuning of parameters.

Full access
Jennifer K. Fletcher, Shannon Mason, and Christian Jakob

Abstract

A climatology of clouds within marine cold air outbreaks, primarily using long-term satellite observations, is presented. Cloud properties between cold air outbreaks in different regions in both hemispheres are compared. In all regions marine cold air outbreak clouds tend to be low level with high cloud fraction and low-to-moderate optical thickness. Stronger cold air outbreaks have clouds that are optically thicker, but not geometrically thicker, than those in weaker cold air outbreaks. There is some evidence that clouds deepen and break up over the course of a cold air outbreak event. The top-of-the-atmosphere longwave cloud radiative effect in cold air outbreaks is small because the clouds have low tops. However, their surface longwave cloud radiative effect is considerably larger. The rarity of cold air outbreaks in summer limits their shortwave cloud radiative effect. They do not contribute substantially to global shortwave cloud radiative effect and are, therefore, unlikely to be a major source of shortwave cloud radiative effect errors in climate models.

Full access
Paloma Trascasa-Castro, Amanda C. Maycock, Yu Yeung Scott Yiu, and Jennifer K. Fletcher

Abstract

The dependence of the winter stratospheric and Euro-Atlantic climate response on ENSO amplitude is investigated using the HadGEM3 model. Experiments are performed with imposed east Pacific sea surface temperature perturbations corresponding to Niño-3.4 anomalies of ±0.75, 1.5, 2.25, and 3.0 K. In the North Pacific, El Niño (EN) deepens and shifts the Aleutian low eastward, while the equivalent magnitude La Niña (LN) perturbations drive anomalies of opposite sign that are around 4 times weaker. The muted North Pacific response to LN can be traced back to the weaker response of tropical convection and the associated anomalous Rossby wave source. The EN perturbations weaken the Arctic polar vortex, with the winter mean zonal mean zonal wind at 60°N and 10 hPa decreasing approximately linearly with Niño-3.4 anomaly by around −3.6 m s−1 K−1. For the strongest EN case (+3 K), the frequency of sudden stratospheric warmings (SSWs) increases by ~60% compared to the control experiment. Hence the results do not support a saturation of the stratospheric pathway for strong EN as suggested in previous literature. The equivalent amplitude LN perturbations cause a weak strengthening of the polar vortex and no substantial change in SSW frequency, in contrast to some reanalysis-based studies. EN induces a negative North Atlantic Oscillation (NAO) index throughout boreal winter, which increases approximately linearly with the Niño-3.4 anomaly by around −0.6 standard deviations K−1. Only the response to the strongest LN perturbations projects onto a weak positive NAO in November, suggesting that the mechanism for the Euro-Atlantic response to LN may be distinct from EN.

Full access
Jennifer K. Fletcher, Douglas J. Parker, Kieran M. R. Hunt, Gokul Vishwanathan, and Mrudula Govindankutty

Abstract

Monsoon depressions (MDs) bring substantial monsoon rainfall to northern and central India. These events usually form over the Bay of Bengal and travel across northern India toward Pakistan. Using European Centre for Medium-Range Weather Forecasts interim reanalysis, an MD-tracking algorithm, and an objective identification method, the authors find that about 40% of MDs interact with northerly intrusions of dry desert air masses as the MDs traverse the subcontinent. MD interactions with dry intrusions are often preceded by positive potential vorticity (PV) anomalies on the subtropical jet and low-level anticyclonic anomalies over the north Arabian Sea. Dry intrusions nearly halve the precipitation rate in the southwest quadrant of MDs, where MDs rain the most. However, dry intrusions increase the rainfall rate near the MD center. Similarly, ascent is reduced west of the MD center and enhanced at the MD center, especially in the upper troposphere. The reduced ascent west of MD centers is likely attributable to changes in vertical shear reducing differential cyclonic vorticity advection. Dry intrusions slightly reduce MDs’ propagation speed. For the mid- to upper-level vortex, this can be explained by anomalous westerlies reducing propagation by adiabatic advection. For the lower-tropospheric vortex, it is likely that reduced diabatic generation of PV plays a role in slowing propagation, along with reduced adiabatic advection.

Open access
Shannon Mason, Jennifer K. Fletcher, John M. Haynes, Charmaine Franklin, Alain Protat, and Christian Jakob

Abstract

A deficit of shortwave cloud forcing over the Southern Ocean is persistent in many global climate models. Cloud regimes have been widely used in model evaluation studies to make a process-oriented diagnosis of cloud parameterization errors, but cloud regimes have some limitations in resolving both observed and simulated cloud behavior. A hybrid methodology is developed for identifying cloud regimes from observed and simulated cloud simultaneously.

Through this methodology, 11 hybrid cloud regimes are identified in the ACCESS1.3 model for the high-latitude Southern Ocean. The hybrid cloud regimes resolve the features of observed cloud and characterize cloud errors in the model. The simulated properties of the hybrid cloud regimes, and their occurrence over the Southern Ocean and in the context of extratropical cyclones, are evaluated, and their contributions to the shortwave radiation errors are quantified.

Three errors are identified: an overall deficit of cloud fraction, a tendency toward optically thin low and midtopped cloud, and an absence of a shallow frontal-type cloud at high latitudes and in the warm fronts of extratropical cyclones.

To demonstrate the utility of the hybrid cloud regimes for the evaluation of changes to the model, the effects of selected changes to the model microphysics are investigated.

Full access
Jongil Han, Marcin L. Witek, Joao Teixeira, Ruiyu Sun, Hua-Lu Pan, Jennifer K. Fletcher, and Christopher S. Bretherton

Abstract

The current operational eddy-diffusivity countergradient (EDCG) planetary boundary layer (PBL) scheme in the NCEP Global Forecast System (GFS) tends to underestimate the PBL growth in the convective boundary layer (CBL). To improve CBL growth, an eddy-diffusivity mass-flux (EDMF) PBL scheme is developed, where the nonlocal transport by large turbulent eddies is represented by a mass-flux (MF) scheme and the local transport by small eddies is represented by an eddy-diffusivity (ED) scheme. For the vertical momentum mixing, the MF scheme is modified to include the effect of the updraft-induced pressure gradient force. While the EDMF scheme displays better CBL growth than the EDCG scheme, it tends to overproduce the amount of low clouds and degrades wind vector forecasts over the tropical ocean where strongly unstable PBLs are rarely found. In order not to degrade the forecast skill in the tropics, a hybrid scheme is developed, where the EDMF scheme is applied only for the strongly unstable PBL, while the EDCG scheme is used for the weakly unstable PBL. Along with the hybrid EDMF scheme, the heating by turbulent kinetic energy (TKE) dissipation is parameterized to reduce an energy imbalance in the GFS. To enhance a too weak vertical turbulent mixing for weakly and moderately stable conditions, the current local scheme in the stable boundary layer (SBL) is modified to use an eddy-diffusivity profile method. The hybrid EDMF PBL scheme with TKE dissipative heating and modified SBL mixing led to significant improvements in some key medium-range weather forecast metrics and was operationally implemented into the NCEP GFS in January 2015.

Full access
Robert Wood, Matthew Wyant, Christopher S. Bretherton, Jasmine Rémillard, Pavlos Kollias, Jennifer Fletcher, Jayson Stemmler, Simone de Szoeke, Sandra Yuter, Matthew Miller, David Mechem, George Tselioudis, J. Christine Chiu, Julian A. L. Mann, Ewan J. O’Connor, Robin J. Hogan, Xiquan Dong, Mark Miller, Virendra Ghate, Anne Jefferson, Qilong Min, Patrick Minnis, Rabindra Palikonda, Bruce Albrecht, Ed Luke, Cecile Hannay, and Yanluan Lin

Abstract

The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer.

Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.

The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

Full access