Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Jennifer Small x
  • All content x
Clear All Modify Search
Christopher J. Goodman and Jennifer D. Small Griswold

Abstract

Weather creates numerous operational and safety hazards within the National Airspace System (NAS). In 2014, extreme weather events attributed 4.3% to the total number of delay minutes recorded by the Bureau of Transportation Statistics. When factoring weather’s impact on the NAS delays and aircraft arriving late delays, weather was responsible for 32.6% of the total number of delay minutes recorded. Hourly surface meteorological aviation routine weather reports (METARs) at major airports can be used to provide valuable insight into the likely causes of weather delays at individual airports. When combined with the Federal Aviation Administration’s (FAA’s) Operations Network (OPSNET) delay data, METARs can be used to identify the major causes of delays and to create delay climatologies for a specific airport. Also, patterns for delays and cancellations for the study period of 2003–15 can be identified for the individual airports included in this study. These patterns can be useful for operators and airport planners to optimize performance in the future.

Full access
Christopher J. Goodman and Jennifer D. Small Griswold

Abstract

A critical determinant of aircraft performance is density altitude, or the density given as a height above mean sea level, which is dependent on air temperature, pressure, and humidity. These meteorological variables change on various time scales (e.g., hourly, seasonal, and decadal) and are regionally impacted by large-scale climate variability as the result of phenomena such as El Niño–Southern Oscillation or the Arctic Oscillation. Here a statistical analysis is performed to determine the impacts of climate variability on seasonally averaged density altitude, a key metric used by pilots to determine aircraft performance and efficiency, as a function of El Niño–Southern Oscillation and the Arctic Oscillation using NCEP–NCAR reanalysis data and historical aviation meteorological records. Regressions show regional dependencies and impacts to density altitudes that vary as a function of season for both El Niño–Southern Oscillation and Arctic Oscillation cases. The results highlight the importance of understanding the regional nature of the impact of climate variability on density altitude and the potential impacts on aviation operations.

Full access
Jennifer D. Small and Patrick Y. Chuang

Abstract

The mechanism responsible for formation of rain in warm clouds has been debated for over six decades. Here, the authors analyze new measurements of shallow cumulus made with a phase Doppler interferometer during the Rain in Cumulus over the Ocean (RICO) experiment. These observations show that drops sufficiently large (>55-μm diameter) to initiate precipitation (termed collision–coalescence initiators or CCIs) are found preferentially at cloud top, tend to cluster with each other, and are found in environments that are thermodynamically, dynamically, and microphysically distinct from those of smaller drops. The CCI environments exhibit cloud spectra that are shifted to larger sizes, with enhanced broadening toward larger drop sizes. Increased entrainment is also associated with CCIs, suggesting that it is an important process in CCI production. A simple model combining inhomogeneous mixing and condensation is inadequate to explain these observations. It is hypothesized that CCIs are produced in cloud-top regions where turbulence generated by entrainment mixing locally enhances collision–coalescence rates.

Full access
Angelyn W. Moore, Ivory J. Small, Seth I. Gutman, Yehuda Bock, John L. Dumas, Peng Fang, Jennifer S. Haase, Mark E. Jackson, and Jayme L. Laber

Abstract

During the North American Monsoon, low-to-midlevel moisture is transported in surges from the Gulf of California and Eastern Pacific Ocean into Mexico and the American Southwest. As rising levels of precipitable water interact with the mountainous terrain, severe thunderstorms can develop, resulting in flash floods that threaten life and property. The rapid evolution of these storms, coupled with the relative lack of upper-air and surface weather observations in the region, make them difficult to predict and monitor, and guidance from numerical weather prediction models can vary greatly under these conditions. Precipitable water vapor (PW) estimates derived from continuously operating ground-based GPS receivers have been available for some time from NOAA’s GPS-Met program, but these observations have been of limited utility to operational forecasters in part due to poor spatial resolution. Under a NASA Advanced Information Systems Technology project, 37 real-time stations were added to NOAA’s GPS-Met analysis providing 30-min PW estimates, reducing station spacing from approximately 150 km to 30 km in Southern California. An 18–22 July 2013 North American Monsoon event provided an opportunity to evaluate the utility of the additional upper-air moisture observations to enhance National Weather Service (NWS) forecaster situational awareness during the rapidly developing event. NWS forecasters used these additional data to detect rapid moisture increases at intervals between the available 1–6-h model updates and approximately twice-daily radiosonde observations, and these contributed tangibly to the issuance of timely flood watches and warnings in advance of flash floods, debris flows, and related road closures.

Full access
Robert M. Rauber, Bjorn Stevens, Jennifer Davison, Sabine Goke, Olga L. Mayol-Bracero, David Rogers, Paquita Zuidema, Harry T. Ochs III, Charles Knight, Jorgen Jensen, Sarah Bereznicki, Simona Bordoni, Humberto Caro-Gautier, Marilé Colón-Robles, Maylissa Deliz, Shaunna Donaher, Virendra Ghate, Ela Grzeszczak, Colleen Henry, Anne Marie Hertel, Ieng Jo, Michael Kruk, Jason Lowenstein, Judith Malley, Brian Medeiros, Yarilis Méndez-Lopez, Subhashree Mishra, Flavia Morales-García, Louise A. Nuijens, Dennis O'Donnell, Diana L. Ortiz-Montalvo, Kristen Rasmussen, Erin Riepe, Sarah Scalia, Efthymios Serpetzoglou, Haiwei Shen, Michael Siedsma, Jennifer Small, Eric Snodgrass, Panu Trivej, and Jonathan Zawislak

The Rain in Cumulus over the Ocean (RICO) field campaign carried out a wide array of educational activities, including a major first in a field project—a complete mission, including research flights, planned and executed entirely by students. This article describes the educational opportunities provided to the 24 graduate and 9 undergraduate students who participated in RICO.

Full access