Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Jens Redemann x
  • Refine by Access: All Content x
Clear All Modify Search
Charles K. Gatebe
,
Michael D. King
,
Alexei I. Lyapustin
,
G. Thomas Arnold
, and
Jens Redemann

Abstract

The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair 580 (CV-580) research aircraft during the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) field campaign and obtained measurements of bidirectional reflectance distribution function (BRDF) of the ocean in July and August 2001 under different illumination conditions with solar zenith angles ranging from 15° to 46°. The BRDF measurements were accompanied by concurrent measurements of atmospheric aerosol optical thickness and column water vapor above the airplane. The method of spherical harmonics with Cox–Munk wave-slope distribution is used in a new algorithm developed for this study to solve the atmosphere–ocean radiative transfer problem and to remove the effects of the atmosphere from airborne measurements. The algorithm retrieves simultaneously the wind speed and full ocean BRDF (sun’s glitter and water-leaving radiance) from CAR measurements and evaluates total albedo and equivalent albedo for the water-leaving radiance outside the glitter. Results show good overall agreement with other measurements and theoretical simulations, with the anisotropy of the water-leaving radiance clearly seen. However, the water-leaving radiance does not show a strong dependence on solar zenith angle as suggested by some theoretical studies. The spectral albedo was found to vary from 4.1%–5.1% at λ = 0.472 μm to 2.4%–3.5% for λ ≥ 0.682 μm. The equivalent water-leaving albedo ranges from 1.0%–2.4% at λ = 0.472 μm to 0.1%–0.6% for λ = 0.682 μm and 0.1%–0.3% for λ = 0.870 μm. Results of the validation of the Cox–Munk model under the conditions measured show that although the model reproduces the shape of sun’s glitter on average with an accuracy of better than 30%, it underestimates the center of the sun’s glitter reflectance by about 30% for low wind speeds (<2–3 m s−1). In cases of high wind speed, the model with Gram–Charlier expansion seems to provide the best fit.

Full access
Paquita Zuidema
,
Jens Redemann
,
James Haywood
,
Robert Wood
,
Stuart Piketh
,
Martin Hipondoka
, and
Paola Formenti
Full access
Brian I. Magi
,
Peter V. Hobbs
,
Thomas W. Kirchstetter
,
Tihomir Novakov
,
Dean A. Hegg
,
Song Gao
,
Jens Redemann
, and
Beat Schmid

Abstract

Airborne in situ measurements of vertical profiles of the aerosol light scattering coefficient, light absorption coefficient, and single scattering albedo (ω 0) are presented for locations off the East Coast of the United States in July–August 2001. The profiles were obtained in relatively clean air, dominated by airflows that had passed over Canada and the Atlantic Ocean. Comparisons of aerosol optical depths (AODs) at 550 nm derived from airborne in situ and sun-photometer measurements agree, on average, to within 0.034 ± 0.021. A frequency distribution of ω 0 measured in the atmospheric boundary layer off the coast yields an average value of ω 0 = 0.96 ± 0.03 at 550 nm. Values for the mass scattering efficiencies of sulfate and total carbon (organic and black carbon) derived from a multiple linear regression are 6.0 ± 1.0 m2 (g S O= 4 )−1 and 2.6 ± 0.9 m2 (g C)−1, respectively. Measurements of sulfate and total carbon mass concentrations are used to estimate the contributions of these two major components of the submicron aerosol to the AOD. Mean percentage contributions to the AOD from sulfate, total carbon, condensed water, and absorbing aerosols are 38% ± 8%, 26% ± 9%, 32% ± 9%, and 4% ± 2%, respectively. The sensitivity of the above results to the assumed values of the hygroscopic growth factors for the particles are examined and it is found that, although the AOD derived from the in situ measurements can vary by as much as 20%, the average value of ω 0 is not changed significantly. The results are compared with those obtained in the same region in 1996 under more polluted conditions.

Full access
Zhonghai Jin
,
Thomas P. Charlock
,
Ken Rutledge
,
Glenn Cota
,
Ralph Kahn
,
Jens Redemann
,
Taiping Zhang
,
David A. Rutan
, and
Fred Rose

Abstract

Spectral and broadband radiances and irradiances (fluxes) were measured from surface, airborne, and spaceborne platforms in the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) campaign. The radiation data obtained on the 4 clear days over ocean during CLAMS are analyzed here with the Coupled Ocean–Atmosphere Radiative Transfer (COART) model. The model is successively compared with observations of broadband fluxes and albedos near the ocean surface from the Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE) sea platform and a low-level OV-10 aircraft, of near-surface spectral albedos from COVE and OV-10, of broadband radiances at multiple angles and inferred top-of-atmosphere (TOA) fluxes from CERES, and of spectral radiances at multiple angles from Airborne Multiangle Imaging Spectroradiometer (MISR), or “AirMISR,” at 20-km altidude. The radiation measurements from different platforms are shown to be consistent with each other and with model results. The discrepancies between the model and observations at the surface are less than 10 W m−2 for downwelling and 2 W m−2 for upwelling fluxes. The model–observation discrepancies for shortwave ocean albedo are less than 8%; some discrepancies in spectral albedo are larger but less than 20%. The discrepancies between low-altitude aircraft and surface measurements are somewhat larger than those between the model and the surface measurements; the former are due to the effects of differences in height, aircraft pitch and roll, and the noise of spatial and temporal variations of atmospheric and oceanic properties. The discrepancy between the model and the CERES observations for the upwelling radiance is 5.9% for all angles; this is reduced to 4.9% if observations within 15° of the sun-glint angle are excluded.

The measurements and model agree on the principal impacts that ocean optical properties have on upwelling radiation at low levels in the atmosphere. Wind-driven surface roughness significantly affects the upwelling radiances measured by aircraft and satellites at small sun-glint angles, especially in the near-infrared channel of MISR. Intercomparisons of various measurements and the model show that most of the radiation observations in CLAMS are robust, and that the coupled radiative transfer model used here accurately treats scattering and absorption processes in both the air and the water.

Full access
Jacek Chowdhary
,
Brian Cairns
,
Michael I. Mishchenko
,
Peter V. Hobbs
,
Glenn F. Cota
,
Jens Redemann
,
Ken Rutledge
,
Brent N. Holben
, and
Ed Russell

Abstract

The extensive set of measurements performed during the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment provides a unique opportunity to evaluate aerosol retrievals over the ocean from multiangle, multispectral photometric, and polarimetric remote sensing observations by the airborne Research Scanning Polarimeter (RSP) instrument.

Previous studies have shown the feasibility of retrieving particle size distributions and real refractive indices from such observations for visible wavelengths without prior knowledge of the ocean color. This work evaluates the fidelity of the aerosol retrievals using RSP measurements during the CLAMS experiment against aerosol properties derived from in situ measurements, sky radiance observations, and sun-photometer measurements, and further extends the scope of the RSP retrievals by using a priori information about the ocean color to constrain the aerosol absorption and vertical distribution.

It is shown that the fine component of the aerosol observed on 17 July 2001 consisted predominantly of dirty sulfatelike particles with an extinction optical thickness of several tenths in the visible, an effective radius of 0.15 ± 0.025 μm and a single scattering albedo of 0.91 ± 0.03 at 550 nm. Analyses of the ocean color and sky radiance observations favor the lower boundary of aerosol single scattering albedo, while in situ measurements favor its upper boundary. Both analyses support the polarimetric retrievals of fine-aerosol effective radius and the consequent spectral variation in extinction optical depth. The estimated vertical distribution of this aerosol component depends on assumptions regarding the water-leaving radiances and is consistent with the top of the aerosol layer being close to the aircraft height (3500 m), with the bottom of the layer being between 2.7 km and the surface. The aerosol observed on 17 July 2001 also contained coarse-mode particles. Comparison of RSP data with sky radiance and in situ measurements suggests that this component consists of nonspherical particles with an effective radius in excess of 1 μm, and with the extinction optical depth being much less than one-tenth at 550 nm.

Full access
Manfred Wendisch
,
Paola Formenti
,
Tad Anderson
,
Alexander Kokhanovsky
,
Bernhard Mayer
,
Peter Pilewskie
,
Steve Platnick Jens Redemann
,
John Remedios
,
Peter Spichtinger
,
Didier Tanré
, and
Filip Vanhellemont
Full access
William L. Smith Jr.
,
Christy Hansen
,
Anthony Bucholtz
,
Bruce E. Anderson
,
Matthew Beckley
,
Joseph G. Corbett
,
Richard I. Cullather
,
Keith M. Hines
,
Michelle Hofton
,
Seiji Kato
,
Dan Lubin
,
Richard H. Moore
,
Michal Segal Rosenhaimer
,
Jens Redemann
,
Sebastian Schmidt
,
Ryan Scott
,
Shi Song
,
John D. Barrick
,
J. Bryan Blair
,
David H. Bromwich
,
Colleen Brooks
,
Gao Chen
,
Helen Cornejo
,
Chelsea A. Corr
,
Seung-Hee Ham
,
A. Scott Kittelman
,
Scott Knappmiller
,
Samuel LeBlanc
,
Norman G. Loeb
,
Colin Miller
,
Louis Nguyen
,
Rabindra Palikonda
,
David Rabine
,
Elizabeth A. Reid
,
Jacqueline A. Richter-Menge
,
Peter Pilewskie
,
Yohei Shinozuka
,
Douglas Spangenberg
,
Paul Stackhouse
,
Patrick Taylor
,
K. Lee Thornhill
,
David van Gilst
, and
Edward Winstead

Abstract

The National Aeronautics and Space Administration (NASA)’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most critical and unique aspect of ARISE mission planning was to coordinate the flight tracks with NASA Cloud and the Earth’s Radiant Energy System (CERES) satellite sensor observations in such a way that satellite sensor angular dependence models and derived top-of-atmosphere fluxes could be validated against the aircraft data over large gridbox domains of order 100–200 km. This was accomplished over open ocean, over the marginal ice zone (MIZ), and over a region of heavy sea ice concentration, in cloudy and clear skies. ARISE data will be valuable to the community for providing better interpretation of satellite energy budget measurements in the Arctic and for process studies involving ice–cloud–atmosphere energy exchange during the sea ice transition period.

Full access