Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Jesse Meng x
  • Refine by Access: All Content x
Clear All Modify Search
Rongqian Yang
,
Michael Ek
, and
Jesse Meng

Abstract

Surface water and energy budgets from the National Centers for Environmental Prediction–U.S. Department of Energy (NCEP–DOE) Atmospheric Model Intercomparison Project (AMIP-II) Global Reanalysis 2 (GR2), the North American Regional Reanalysis (NARR), and the NCEP Climate Forecast System Reanalysis (CFSR) are compared here with each other and with available observations over the Mississippi River basin. The comparisons in seasonal cycle, interannual variation, and annual mean over a 31-yr period show that there are a number of noticeable differences and similarities in the large-scale basin averages. Warm season precipitation and runoff in the GR2 are too large compared to the observations, and seasonal surface water variation is small. By contrast, the precipitation in both NARR and CFSR is more reasonable and in better agreement with the observation, although the corresponding seasonal runoff is very small. The main causes of the differences in both surface parameterization and approach used in assimilating the observed precipitation datasets and snow analyses are then discussed. Despite the discrepancies in seasonal water budget components, seasonal energy budget terms in the three reanalyses are close to each other and to available observations. The interannual variations in both water and energy budgets are comparable. This study shows that the CFSR achieves a large improvement over the GR2, indicating that the CFSR dataset can be used in climate variability studies. Nonetheless, improved land surface parameterization schemes and data assimilation techniques are needed to depict the surface water and energy climates better, in particular, the variation in seasonal runoff.

Full access
Jon Gottschalck
,
Jesse Meng
,
Matt Rodell
, and
Paul Houser

Abstract

Precipitation is arguably the most important meteorological forcing variable in land surface modeling. Many types of precipitation datasets exist (with various pros and cons) and include those from atmospheric data assimilation systems, satellites, rain gauges, ground radar, and merged products. These datasets are being evaluated in order to choose the most suitable precipitation forcing for real-time and retrospective simulations of the Global Land Data Assimilation System (GLDAS). This paper first presents results of a comparison for the period from March 2002 to February 2003. Later, GLDAS simulations 14 months in duration are analyzed to diagnose impacts on GLDAS land surface states when using the Mosaic land surface model (LSM).

A comparison of seasonal total precipitation for the continental United States (CONUS) illustrates that the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) has the closest agreement with a CPC rain gauge dataset for all seasons except winter. The European Centre for Medium-Range Weather Forecasts (ECMWF) model performs the best of the modeling systems. The satellite-only products [the Tropical Rainfall Measuring Mission (TRMM) Real-time Multi-satellite Precipitation Analysis and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)] suffer from a few deficiencies—most notably an overestimation of summertime precipitation in the central United States (200–400 mm). CMAP is the most closely correlated with daily rain gauge data for the spring, fall, and winter seasons, while the satellite-only estimates perform best in summer. GLDAS land surface states are sensitive to different precipitation forcing where percent differences in volumetric soil water content (SWC) between simulations ranged from −75% to +100%. The percent differences in SWC are generally 25%–75% less than the percent precipitation differences, indicating that GLDAS and specifically the Mosaic LSM act to generally “damp” precipitation differences. Areas where the percent changes are equivalent to the percent precipitation changes, however, are evident. Soil temperature spread between GLDAS runs was considerable and ranged up to ±3.0 K with the largest impact in the western United States.

Full access
Rongqian Yang
,
Kenneth Mitchell
,
Jesse Meng
, and
Michael Ek

Abstract

To examine the impact from land model upgrades and different land initializations on the National Centers for Environmental Prediction (NCEP)’s Climate Forecast System (CFS), extensive T126 CFS experiments are carried out for 25 summers with 10 ensemble members using the old Oregon State University (OSU) land surface model (LSM) and the new Noah LSM. The CFS using the Noah LSM, initialized in turn with land states from the NCEP–Department of Energy Global Reanalysis 2 (GR-2), Global Land Data System (GLDAS), and GLDAS climatology, is compared to the CFS control run using the OSU LSM initialized with the GR-2 land states. Using anomaly correlation as a primary measure, the summer-season prediction skill of the CFS using different land models and different initial land states is assessed for SST, precipitation, and 2-m air temperature over the contiguous United States (CONUS) on an ensemble basis.

Results from these CFS experiments indicate that upgrading from the OSU LSM to the Noah LSM improves the overall CONUS June–August (JJA) precipitation prediction, especially during ENSO neutral years. Such an enhancement in CFS performance requires the execution of a GLDAS with the very same Noah LSM as utilized in the land component of the CFS, while improper initializations of the Noah LSM using the GR-2 land states lead to degraded CFS performance. In comparison with precipitation, the land upgrades have a relatively small impact on both of the SST and 2-m air temperature predictions.

Full access
Weizhong Zheng
,
Michael Ek
,
Kenneth Mitchell
,
Helin Wei
, and
Jesse Meng

Abstract

This study examines the performance of the NCEP Global Forecast System (GFS) surface layer parameterization scheme for strongly stable conditions over land in which turbulence is weak or even disappears because of high near-surface atmospheric stability. Cases of both deep snowpack and snow-free conditions are investigated. The results show that decoupling and excessive near-surface cooling may appear in the late afternoon and nighttime, manifesting as a severe cold bias of the 2-m surface air temperature that persists for several hours or more. Concurrently, because of negligible downward heat transport from the atmosphere to the land, a warm temperature bias develops at the first model level. The authors test changes to the stable surface layer scheme that include introduction of a stability parameter constraint that prevents the land–atmosphere system from fully decoupling and modification to the roughness-length formulation. GFS sensitivity runs with these two changes demonstrate the ability of the proposed surface layer changes to reduce the excessive near-surface cooling in forecasts of 2-m surface air temperature. The proposed changes prevent both the collapse of turbulence in the stable surface layer over land and the possibility of numerical instability resulting from thermal decoupling between the atmosphere and the surface. The authors also execute and evaluate daily GFS 7-day test forecasts with the proposed changes spanning a one-month period in winter. The assessment reveals that the systematic deficiencies and substantial errors in GFS near-surface 2-m air temperature forecasts are considerably reduced, along with a notable reduction of temperature errors throughout the lower atmosphere and improvement of forecast skill scores for light and medium precipitation amounts.

Full access
Jesse Meng
,
Rongqian Yang
,
Helin Wei
,
Michael Ek
,
George Gayno
,
Pingping Xie
, and
Kenneth Mitchell

Abstract

The NCEP Climate Forecast System Reanalysis (CFSR) uses the NASA Land Information System (LIS) to create its land surface analysis: the NCEP Global Land Data Assimilation System (GLDAS). Comparing to the previous two generations of NCEP global reanalyses, this is the first time a coupled land–atmosphere data assimilation system is included in a global reanalysis. Global observed precipitation is used as direct forcing to drive the land surface analysis, rather than the typical reanalysis approach of using precipitation assimilating from a background atmospheric model simulation. Global observed snow cover and snow depth fields are used to constrain the simulated snow variables. This paper describes 1) the design and implementation of GLDAS/LIS in CFSR, 2) the forcing of the observed global precipitation and snow fields, and 3) preliminary results of global and regional soil moisture content and land surface energy and water budgets closure. With special attention made during the design of CFSR GLDAS/LIS, all the source and sink terms in the CFSR land surface energy and water budgets can be assessed and the total budgets are balanced. This is one of many aspects indicating improvements in CFSR from the previous NCEP reanalyses.

Full access
Youlong Xia
,
Michael Ek
,
Justin Sheffield
,
Ben Livneh
,
Maoyi Huang
,
Helin Wei
,
Song Feng
,
Lifeng Luo
,
Jesse Meng
, and
Eric Wood

Abstract

Soil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North American Land Data Assimilation phase 2 (NLDAS-2) has generated 31 years (1979–2009) of simulated hourly soil temperature data with a spatial resolution of ⅛°. This dataset has not been comprehensively evaluated to date. Thus, the purpose of this paper is to assess Noah-simulated soil temperature for different soil depths and time scales. The authors used long-term (1979–2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0–10, 10–40, and 40–100 cm) for annual and monthly time scales. Short-term (1997–99) observed soil temperatures from 72 Oklahoma Mesonet stations were used to validate simulated soil temperatures for three soil layers and for daily and hourly time scales. The results showed that the Noah land surface model generally matches observed soil temperature well for different soil layers and time scales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season that are due to small downward longwave radiation and issues related to model parameters.

Full access
Suranjana Saha
,
Shrinivas Moorthi
,
Xingren Wu
,
Jiande Wang
,
Sudhir Nadiga
,
Patrick Tripp
,
David Behringer
,
Yu-Tai Hou
,
Hui-ya Chuang
,
Mark Iredell
,
Michael Ek
,
Jesse Meng
,
Rongqian Yang
,
Malaquías Peña Mendez
,
Huug van den Dool
,
Qin Zhang
,
Wanqiu Wang
,
Mingyue Chen
, and
Emily Becker

Abstract

The second version of the NCEP Climate Forecast System (CFSv2) was made operational at NCEP in March 2011. This version has upgrades to nearly all aspects of the data assimilation and forecast model components of the system. A coupled reanalysis was made over a 32-yr period (1979–2010), which provided the initial conditions to carry out a comprehensive reforecast over 29 years (1982–2010). This was done to obtain consistent and stable calibrations, as well as skill estimates for the operational subseasonal and seasonal predictions at NCEP with CFSv2. The operational implementation of the full system ensures a continuity of the climate record and provides a valuable up-to-date dataset to study many aspects of predictability on the seasonal and subseasonal scales. Evaluation of the reforecasts show that the CFSv2 increases the length of skillful MJO forecasts from 6 to 17 days (dramatically improving subseasonal forecasts), nearly doubles the skill of seasonal forecasts of 2-m temperatures over the United States, and significantly improves global SST forecasts over its predecessor. The CFSv2 not only provides greatly improved guidance at these time scales but also creates many more products for subseasonal and seasonal forecasting with an extensive set of retrospective forecasts for users to calibrate their forecast products. These retrospective and real-time operational forecasts will be used by a wide community of users in their decision making processes in areas such as water management for rivers and agriculture, transportation, energy use by utilities, wind and other sustainable energy, and seasonal prediction of the hurricane season.

Full access
Suranjana Saha
,
Shrinivas Moorthi
,
Hua-Lu Pan
,
Xingren Wu
,
Jiande Wang
,
Sudhir Nadiga
,
Patrick Tripp
,
Robert Kistler
,
John Woollen
,
David Behringer
,
Haixia Liu
,
Diane Stokes
,
Robert Grumbine
,
George Gayno
,
Jun Wang
,
Yu-Tai Hou
,
Hui-ya Chuang
,
Hann-Ming H. Juang
,
Joe Sela
,
Mark Iredell
,
Russ Treadon
,
Daryl Kleist
,
Paul Van Delst
,
Dennis Keyser
,
John Derber
,
Michael Ek
,
Jesse Meng
,
Helin Wei
,
Rongqian Yang
,
Stephen Lord
,
Huug van den Dool
,
Arun Kumar
,
Wanqiu Wang
,
Craig Long
,
Muthuvel Chelliah
,
Yan Xue
,
Boyin Huang
,
Jae-Kyung Schemm
,
Wesley Ebisuzaki
,
Roger Lin
,
Pingping Xie
,
Mingyue Chen
,
Shuntai Zhou
,
Wayne Higgins
,
Cheng-Zhi Zou
,
Quanhua Liu
,
Yong Chen
,
Yong Han
,
Lidia Cucurull
,
Richard W. Reynolds
,
Glenn Rutledge
, and
Mitch Goldberg

The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice model has three layers. The CFSR atmospheric model has observed variations in carbon dioxide (CO2) over the 1979–2009 period, together with changes in aerosols and other trace gases and solar variations. Most available in situ and satellite observations were included in the CFSR. Satellite observations were used in radiance form, rather than retrieved values, and were bias corrected with “spin up” runs at full resolution, taking into account variable CO2 concentrations. This procedure enabled the smooth transitions of the climate record resulting from evolutionary changes in the satellite observing system.

CFSR atmospheric, oceanic, and land surface output products are available at an hourly time resolution and a horizontal resolution of 0.5° latitude × 0.5° longitude. The CFSR data will be distributed by the National Climatic Data Center (NCDC) and NCAR. This reanalysis will serve many purposes, including providing the basis for most of the NCEP Climate Prediction Center's operational climate products by defining the mean states of the atmosphere, ocean, land surface, and sea ice over the next 30-yr climate normal (1981–2010); providing initial conditions for historical forecasts that are required to calibrate operational NCEP climate forecasts (from week 2 to 9 months); and providing estimates and diagnoses of the Earth's climate state over the satellite data period for community climate research.

Preliminary analysis of the CFSR output indicates a product that is far superior in most respects to the reanalysis of the mid-1990s. The previous NCEP–NCAR reanalyses have been among the most used NCEP products in history; there is every reason to believe the CFSR will supersede these older products both in scope and quality, because it is higher in time and space resolution, covers the atmosphere, ocean, sea ice, and land, and was executed in a coupled mode with a more modern data assimilation system and forecast model.

Full access