Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Jesse Norris x
  • Refine by Access: All Content x
Clear All Modify Search
Jesse Norris
,
Gang Chen
, and
J. David Neelin

ABSTRACT

Projected changes in the frequency of major precipitation accumulations (hundreds of millimeters), integrated over rainfall events, over land in the late twenty-first century are analyzed in the Community Earth System Model (CESM) Large Ensemble, based on the RCP8.5 scenario. Accumulation sizes are sorted by the local average recurrence interval (ARI), ranging from 0.1 to 100 years, for the current and projected late-twenty-first-century climates separately. For all ARIs, the frequency of exceedance of the given accumulation size increases in the future climate almost everywhere, especially for the largest accumulations, with the 100-yr accumulation becoming about 3 times more frequent, averaged over the global land area. The moisture budget allows the impacts of individual factors—moisture, circulation, and event duration—to be isolated. In the tropics, both moisture and circulation cause large future increases, enhancing the 100-yr accumulation by 23% and 13% (average over tropical land), and are individually responsible for making the current-climate 100-yr accumulation 2.7 times and 1.8 times more frequent, but effects of shorter durations slightly offset these effects. In the midlatitudes, large accumulations become about 5% longer in duration, but are predominantly controlled by enhanced moisture, with the 100-yr accumulation (land average) becoming 2.4 times more frequent, and 2.2 times more frequent due to moisture increases alone. In some monsoon-affected regions, the 100-yr accumulation becomes more than 5 times as frequent, where circulation changes are the most impactful factor. These projections indicate that changing duration of events is a relatively minor effect on changing accumulations, their future enhancement being dominated by enhanced intensity (the combination of moisture and circulation).

Full access
Jesse Norris
,
Gang Chen
, and
J. David Neelin

Abstract

The moisture budget is evaluated as a function of the probability distribution of precipitation for the end of the twentieth century and projected end of the twenty-first century in the Community Earth System Model Large Ensemble. For a given precipitation percentile, a conditional moisture budget equation relates precipitation minus evaporation (P − E) to vertical moisture transport, horizontal moisture advection, and moisture storage. At high percentiles, moisture advection and moisture storage cancel and evaporation is negligible, so that precipitation is approximately equal to vertical moisture transport, and likewise for projected changes. Therefore, projected changes to extreme precipitation are approximately equal to the sum of thermodynamic and dynamic tendencies, representing changes to the vertical profiles of moisture content and mass convergence, respectively. The thermodynamic tendency is uniform across percentiles and regions as an intensification of the hydrological cycle, but the dynamic tendency is more complex. For extreme events, per degree of warming, in the mid-to-high latitudes the dynamic tendency is small, so that precipitation approximately scales by the Clausius–Clapeyron 7% K−1 increase. In the subtropics, a drying tendency originating from dynamics offsets the thermodynamic wetting tendency, with the net effect on precipitation varying among regions. The effect of this dynamic drying decreases with increasing percentile. In the deep tropics, a positive dynamic tendency occurs with magnitude similar to or greater than the positive thermodynamic tendency, resulting in generally a 10%–15% K−1 precipitation increase, and with a >25% K−1 increase over the tropical east Pacific. This reinforcing dynamical tendency increases rapidly for high percentiles.

Full access

Precipitation Banding in Idealized Baroclinic Waves

Jesse Norris
,
Geraint Vaughan
, and
David M. Schultz

Abstract

Moist idealized baroclinic-wave simulations show the development of precipitation bands from a zonally uniform initial midlatitude jet. For a frictionless lower boundary, and with no latent-heat release or surface heat and moisture fluxes, warm advection is strong and a bent-back warm front forms. Although a narrow vertical-velocity maximum forms within the area of synoptic-scale ascent near the triple point, only a wide warm-frontal band forms. As surface roughness length increases between simulations to that of an ocean then a land surface, warm advection is reduced and the cold front becomes stronger relative to the warm front. A separate narrow rainband forms along the cold front, which is more intense and farther removed from the wide warm-frontal band when roughness length is greater. In the simulation with roughness length appropriate to the ocean, after the narrow band decays, the precipitation becomes oriented along the warm conveyor belt in the warm sector. When latent-heat release is included, this warm-sector precipitation evolves into multiple bands, which eventually weaken with the cyclone. When surface heat and moisture fluxes are included, the ascent at the surface cold front stays strong and a well-defined cold front of the anafront variety persists through this mature stage. The surface precipitation remains in a single intense band along and ahead of the cold front. Therefore, strong surface heat and moisture fluxes inhibit multiple bands, but a simulation with lower sea surface temperature (SST) more closely resembles the simulation without surface heat and moisture fluxes, demonstrating that the detailed structure and evolution of precipitation banding is sensitive to SST.

Open access
Jesse Norris
,
Geraint Vaughan
, and
David M. Schultz

Abstract

Precipitation patterns along cold fronts can exhibit a variety of morphologies including narrow cold-frontal rainbands and core-and-gap structures. A three-dimensional primitive equation model is used to investigate alongfront variability of precipitation in an idealized baroclinic wave. Along the poleward part of the cold front, a narrow line of precipitation develops. Along the equatorward part of the cold front, precipitation cores and gaps form. The difference between the two evolutions is due to differences in the orientation of vertical shear near the front in the lower troposphere: at the poleward end the along-frontal shear is dominant and the front is in near-thermal wind balance, while at the equatorward end the cross-frontal shear is almost as large. At the poleward end, the thermal structure remains erect with the front well defined up to the midtroposphere, hence updrafts remain erect and precipitation falls in a continuous line along the front. At the equatorward end, the cores form as undulations appear in both the prefrontal and postfrontal lighter precipitation, associated with vorticity maxima moving along the front on either side. Cross-frontal winds aloft tilt updrafts, so that some precipitation falls ahead of the surface cold front, forming the cores. Sensitivity simulations are also presented in which SST and roughness length are varied between simulations. Larger SST reduces cross-frontal winds aloft and leads to a more continuous rainband. Larger roughness length destroys the surface wind shift and thermal gradient, allowing mesovortices to dominate the precipitation distribution, leading to distinctive and irregularly shaped, quasi-regularly spaced precipitation maxima.

Full access
Leila M. V. Carvalho
,
Charles Jones
,
Forest Cannon
, and
Jesse Norris

Abstract

The Indian monsoon system (IMS) is among the most complex and important climatic features on land. This study proposes a simple and robust method to investigate large-scale variations and changes in the IMS that accounts for fluctuations in amplitude, onset, and duration of the summer monsoon, including active and break phases, and the postmonsoon season. This study uses 35 years (1979–2013) of daily data from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) at 1° resolution and indicates great potential for application to other reanalyses and climate model datasets. The method is based on combined EOF (CEOF) analysis of variables associated with the IMS’s seasonal cycle (precipitation, circulation at 10 m, and temperature and specific humidity at 2 m). The first CEOF (CEOF-1) explains ~40% of the total variance and represents the continental-scale Asian monsoon. The second CEOF (CEOF-2) explains 11% of the variance and characterizes the Indian monsoon variability, including increased precipitation over western, central, and northern parts of India and the monsoon onset and demise over those regions. Thus, CEOF-2 is referred to as the large-scale index for the Indian monsoon system (LIMS). It is shown that LIMS’s amplitude is strongly correlated with the total June–September precipitation over India. LIMS is continuous in time and can be used to evaluate significant postmonsoon rainfall events that often affect the Indian subcontinent. Moreover, LIMS exhibits spectral variance on intraseasonal time scales that are associated with active and break phases of the monsoon during summer and enhanced rainfall in the postmonsoon period.

Full access
Benjamin Bass
,
Stefan Rahimi
,
Naomi Goldenson
,
Alex Hall
,
Jesse Norris
, and
Zachary J. Lebow

Abstract

In this study, we calibrate a regional climate model’s (RCM) underlying land surface model (LSM). In addition to providing a realistic representation of runoff across the hydroclimatically diverse western United States, this is done to take advantage of the RCM’s ability to physically resolve meteorological forcing data in ungauged regions, and to prepare the calibrated hydrologic model for tight coupling, or the ability to represent land surface–atmosphere interactions, with the RCM. Specifically, we use a 9-km resolution meteorological forcing dataset across the western United States, from the fifth generation ECMWF Reanalysis (ERA5) downscaled by the Weather Research Forecasting (WRF) regional climate model, as an offline forcing for Noah-Multiparameterization (Noah-MP). We detail the steps involved in producing an LSM capable of accurately representing runoff, including physical parameterization selection, parameter calibration, and regionalization to ungauged basins. Based on our model evaluation from 1954 to 2021 for 586 basins with daily natural streamflow, the streamflow bias is reduced from 24.2% to 4.4%, and the median daily Nash–Sutcliffe efficiency (NSE) is improved from 0.12 to 0.36. When validating against basins with monthly natural streamflow data, we obtain a similar reduction in bias and a median monthly NSE improvement from 0.18 to 0.56. In this study, we also discover the optimal setup when using a donor-basin method to regionalize parameters to ungauged basins, which can vary by 0.06 NSE for unique designs of this regionalization method.

Significance Statement

This study provides useful guidance for improving a land surface model to accurately represent runoff across a spatially extensive and hydroclimatically diverse region (the western United States). The land surface model is updated to represent runoff more accurately at gauged basins, and then additionally updated for basins without observational data using a mathematical approach called the donor-basin method. We make use of a regional climate model’s reanalysis-derived meteorological data and its underlying land surface model to achieve realistic runoff. The calibrated land surface model can thus be tightly coupled in subsequent studies in a manner that should more accurately reflect runoff conditions. Findings from this study will serve as a useful reference for the atmospheric (and hydrologic) modeling communities and their ability to represent large-scale hydrology accurately.

Free access
Jesse Norris
,
Alex Hall
,
Chad W. Thackeray
,
Di Chen
, and
Gavin D. Madakumbura

Abstract

Large uncertainty exists in hydrologic sensitivity (HS), the global-mean precipitation increase per degree of warming, across global climate model (GCM) ensembles. Meanwhile, the global circulation and hence global precipitation are sensitive to variations of surface temperature under internal variability. El Niño–Southern Oscillation (ENSO) is the most dominant mode of global temperature variability and hence of precipitation variability. Here we show in phase 6 of the Coupled Model Intercomparison Project (CMIP6) that the strength of HS under ENSO is predictive of HS in the climate change context (r = 0.56). This correlation increases to 0.62 when only central Pacific ENSO events are considered, suggesting that they are a better proxy for HS under future warming than east Pacific ENSO events. GCMs with greater HS are associated with greater weakening of the Walker circulation and expansion of the Hadley circulation under ENSO. Observations of HS under ENSO suggest that it is significantly underestimated by the GCMs, with the lower bound of observational uncertainty almost double even the highest-HS GCMs. The ENSO-related transformation of the tropical circulation holds clues into how the GCMs may be improved in order to more reliably simulate future hydrological cycle intensification.

Full access
Jesse Norris
,
Alex Hall
,
J. David Neelin
,
Chad W. Thackeray
, and
Di Chen

Abstract

Daily and subdaily precipitation extremes in historical phase 6 of the Coupled Model Intercomparison Project (CMIP6) simulations are evaluated against satellite-based observational estimates. Extremes are defined as the precipitation amount exceeded every x years, ranging from 0.01 to 10, encompassing the rarest events that are detectable in the observational record without noisy results. With increasing temporal resolution there is an increased discrepancy between models and observations: for daily extremes, the multimodel median underestimates the highest percentiles by about a third, and for 3-hourly extremes by about 75% in the tropics. The novelty of the current study is that, to understand the model spread, we evaluate the 3D structure of the atmosphere when extremes occur. In midlatitudes, where extremes are simulated predominantly explicitly, the intuitive relationship exists whereby higher-resolution models produce larger extremes (r = −0.49), via greater vertical velocity. In the tropics, the convective fraction (the fraction of precipitation simulated directly from the convective scheme) is more relevant. For models below 60% convective fraction, precipitation amount decreases with convective fraction (r = −0.63), but above 75% convective fraction, this relationship breaks down. In the lower-convective-fraction models, there is more moisture in the lower troposphere, closer to saturation. In the higher-convective-fraction models, there is deeper convection and higher cloud tops, which appears to be more physical. Thus, the low-convective models are mostly closer to the observations of extreme precipitation in the tropics, but likely for the wrong reasons. These intermodel differences in the environment in which extremes are simulated hold clues into how parameterizations could be modified in general circulation models to produce more credible twenty-first-century projections.

Full access
Gang Chen
,
Jesse Norris
,
J. David Neelin
,
Jian Lu
,
L. Ruby Leung
, and
Koichi Sakaguchi

Abstract

Precipitation changes in a warming climate have been examined with a focus on either mean precipitation or precipitation extremes, but changes in the full probability distribution of precipitation have not been well studied. This paper develops a methodology for the quantile-conditional column moisture budget of the atmosphere for the full probability distribution of precipitation. Analysis is performed on idealized aquaplanet model simulations under 3-K uniform SST warming across different horizontal resolutions. Because the covariance of specific humidity and horizontal mass convergence is much reduced when conditioned onto a given precipitation percentile range, their conditional averages yield a clear separation between the moisture (thermodynamic) and circulation (dynamic) effects of vertical moisture transport on precipitation. The thermodynamic response to idealized climate warming can be understood as a generalized “wet get wetter” mechanism, in which the heaviest precipitation of the probability distribution is enhanced most from increased gross moisture stratification, at a rate controlled by the change in lower-tropospheric moisture rather than column moisture. The dynamic effect, in contrast, can be interpreted by shifts in large-scale atmospheric circulations such as the Hadley cell circulation or midlatitude storm tracks. Furthermore, horizontal moisture advection, albeit of secondary role, is important for regional precipitation change. Although similar mechanisms are at play for changes in both mean precipitation and precipitation extremes, the thermodynamic contributions of moisture transport to increases in high percentiles of precipitation tend to be more widespread across a wide range of latitudes than increases in the mean, especially in the subtropics.

Full access