Search Results
You are looking at 1 - 9 of 9 items for
- Author or Editor: Ji-Young Han x
- Refine by Access: All Content x
Abstract
The effects of a nonlocal planetary boundary layer (PBL) scheme that considers scale dependency in the parameterized turbulent vertical transport are investigated for a case of wintertime lake-effect precipitation over Korea at gray-zone resolutions using a mesoscale model. An experiment using the scale-aware PBL scheme is compared with that using a conventional PBL scheme, which shows that the simulated precipitation amount at a resolution of less than 1 km is smaller with the scale-aware PBL scheme. The role of turbulent processes in simulating lake-effect precipitation is understood through interaction with microphysical processes. When the scale-aware PBL scheme is used, liquid water content is increased while ice water content is reduced. The higher cloud water content is because of enhanced condensation with stronger updrafts, attributed to the suppression of parameterized turbulent mixing. This results in higher rainwater content by enhancing autoconversion and accretion from cloud water to rainwater. The cloud ice content is reduced mainly because of the suppressed deposition and enhanced sublimation centered near the PBL top, and the snow content is reduced mainly because of the enhanced sublimation below and near the PBL top and suppressed growth of cloud ice to snow. The lower ice water content is mainly due to the drier PBL, attributed to the enhanced resolved (suppressed parameterized) turbulent moisture transport and enhanced condensation. The melting of a smaller amount of snow under dominant cold rain processes is responsible for the reduced surface precipitation with the scale-aware PBL scheme.
Abstract
The effects of a nonlocal planetary boundary layer (PBL) scheme that considers scale dependency in the parameterized turbulent vertical transport are investigated for a case of wintertime lake-effect precipitation over Korea at gray-zone resolutions using a mesoscale model. An experiment using the scale-aware PBL scheme is compared with that using a conventional PBL scheme, which shows that the simulated precipitation amount at a resolution of less than 1 km is smaller with the scale-aware PBL scheme. The role of turbulent processes in simulating lake-effect precipitation is understood through interaction with microphysical processes. When the scale-aware PBL scheme is used, liquid water content is increased while ice water content is reduced. The higher cloud water content is because of enhanced condensation with stronger updrafts, attributed to the suppression of parameterized turbulent mixing. This results in higher rainwater content by enhancing autoconversion and accretion from cloud water to rainwater. The cloud ice content is reduced mainly because of the suppressed deposition and enhanced sublimation centered near the PBL top, and the snow content is reduced mainly because of the enhanced sublimation below and near the PBL top and suppressed growth of cloud ice to snow. The lower ice water content is mainly due to the drier PBL, attributed to the enhanced resolved (suppressed parameterized) turbulent moisture transport and enhanced condensation. The melting of a smaller amount of snow under dominant cold rain processes is responsible for the reduced surface precipitation with the scale-aware PBL scheme.
Abstract
One of the important problems in mesoscale atmospheric dynamics is how the atmosphere responds to convective heating or cooling. Here, the authors examine nonlinear effects on convectively forced mesoscale flows in the context of the nonlinear response of a stably stratified flow to elevated steady heating in two dimensions using a nondimensional numerical model. Results of two-dimensional numerical experiments in a uniform flow show that even without vertical wind shear, a separation of an upwind cellular updraft from the steady heating-induced main updraft occurs in a highly nonlinear flow system. This separation occurs as the compensating cellular downdraft associated with a secondary maximum in the main updraft develops. As the nonlinearity of the flow system increases, the upwind cellular updraft is separated earlier and becomes stronger. Smaller viscous terms result in the separation of more cellular updrafts, which become stronger and move farther away from the main updraft region. In particular, in an inviscid flow, cellular updrafts are periodically separated from the main updraft, and the first cellular updraft and downdraft have intensities comparable to the intensity of the main updraft. In a viscid flow with a constant vertical wind shear up to a certain height, the propagating cellular updraft and downdraft are produced when the nonlinearity is large, as in a uniform flow. Stronger vertical wind shear leads to the earlier formation of the cellular updraft and its stronger intensity, faster propagating speed, and longer lifetime. Results of numerical experiments with squall line–type forcing imply that the highly nonlinear state is necessary for the development of cellular updrafts.
Abstract
One of the important problems in mesoscale atmospheric dynamics is how the atmosphere responds to convective heating or cooling. Here, the authors examine nonlinear effects on convectively forced mesoscale flows in the context of the nonlinear response of a stably stratified flow to elevated steady heating in two dimensions using a nondimensional numerical model. Results of two-dimensional numerical experiments in a uniform flow show that even without vertical wind shear, a separation of an upwind cellular updraft from the steady heating-induced main updraft occurs in a highly nonlinear flow system. This separation occurs as the compensating cellular downdraft associated with a secondary maximum in the main updraft develops. As the nonlinearity of the flow system increases, the upwind cellular updraft is separated earlier and becomes stronger. Smaller viscous terms result in the separation of more cellular updrafts, which become stronger and move farther away from the main updraft region. In particular, in an inviscid flow, cellular updrafts are periodically separated from the main updraft, and the first cellular updraft and downdraft have intensities comparable to the intensity of the main updraft. In a viscid flow with a constant vertical wind shear up to a certain height, the propagating cellular updraft and downdraft are produced when the nonlinearity is large, as in a uniform flow. Stronger vertical wind shear leads to the earlier formation of the cellular updraft and its stronger intensity, faster propagating speed, and longer lifetime. Results of numerical experiments with squall line–type forcing imply that the highly nonlinear state is necessary for the development of cellular updrafts.
Abstract
Urban heat island–induced circulation and convection in three dimensions are investigated theoretically and numerically in the context of the response of a stably stratified uniform flow to specified low-level heating that represents an urban heat island. In a linear, theoretical part of the investigation, an analytic solution for the perturbation vertical velocity in a three-dimensional, time-dependent, hydrostatic, nonrotating, inviscid, Boussinesq airflow system is obtained. The solution reveals a typical internal gravity wave field, including low-level upward motion downwind of the heating center. Precipitation enhancement observed downwind of urban areas may be partly due to this downwind upward motion. The comparison of two- and three-dimensional flow fields indicates that the dispersion of gravity wave energy into an additional dimension results in a faster approach to a quasi-steady state and a weaker quasi-steady flow well above the concentrated heating region in three dimensions.
In a nonlinear, numerical modeling part of the investigation, extensive dry and moist simulations using a nonhydrostatic, compressible model with advanced physical parameterizations [Advanced Regional Prediction System (ARPS)] are performed. While the maximum perturbation vertical velocity in the linear internal gravity wave field exists in the downwind region close to the heating center, the maximum updraft in three-dimensional dry simulations propagates downwind and then becomes quasi stationary. In three-dimensional moist simulations, it is demonstrated that the downwind upward motion induced by an urban heat island can initiate moist convection and result in downwind precipitation. The cloud induced by the downwind upward motion grows rapidly to become deep convective clouds. Heavy rainfalls are localized in a region not far from the heating center by a convective precipitating system that is nearly stationary. The differences in results between two and three dimensions are explained by the presence of (moist) convergence in an additional dimension. The numerical simulation results indicate that the intensity and horizontal structure of the urban heat island affect those of circulation and convection and hence the distribution of surface precipitation.
Abstract
Urban heat island–induced circulation and convection in three dimensions are investigated theoretically and numerically in the context of the response of a stably stratified uniform flow to specified low-level heating that represents an urban heat island. In a linear, theoretical part of the investigation, an analytic solution for the perturbation vertical velocity in a three-dimensional, time-dependent, hydrostatic, nonrotating, inviscid, Boussinesq airflow system is obtained. The solution reveals a typical internal gravity wave field, including low-level upward motion downwind of the heating center. Precipitation enhancement observed downwind of urban areas may be partly due to this downwind upward motion. The comparison of two- and three-dimensional flow fields indicates that the dispersion of gravity wave energy into an additional dimension results in a faster approach to a quasi-steady state and a weaker quasi-steady flow well above the concentrated heating region in three dimensions.
In a nonlinear, numerical modeling part of the investigation, extensive dry and moist simulations using a nonhydrostatic, compressible model with advanced physical parameterizations [Advanced Regional Prediction System (ARPS)] are performed. While the maximum perturbation vertical velocity in the linear internal gravity wave field exists in the downwind region close to the heating center, the maximum updraft in three-dimensional dry simulations propagates downwind and then becomes quasi stationary. In three-dimensional moist simulations, it is demonstrated that the downwind upward motion induced by an urban heat island can initiate moist convection and result in downwind precipitation. The cloud induced by the downwind upward motion grows rapidly to become deep convective clouds. Heavy rainfalls are localized in a region not far from the heating center by a convective precipitating system that is nearly stationary. The differences in results between two and three dimensions are explained by the presence of (moist) convergence in an additional dimension. The numerical simulation results indicate that the intensity and horizontal structure of the urban heat island affect those of circulation and convection and hence the distribution of surface precipitation.
Abstract
Convectively forced mesoscale flows in three dimensions are theoretically investigated by examining the transient response of a stably stratified atmosphere to convective heating. Solutions for the equations governing small-amplitude perturbations in a uniform basic-state wind with specified convective heating are analytically obtained using the Green function method. In the surface pulse heating case, it is explicitly shown that the vertical displacement at the center of the 3D steady heating decreases as fast as t −1 for large t. Hence, unlike in two dimensions, the steady state is approached in three dimensions. In the finite-depth steady heating case, the perturbation vertical velocity field in the stationary mode shows a main updraft region extending over the heating layer and V-shaped upward and downward motions above and below the heating layer. Including the third dimension results in a stronger updraft at an early stage, a weaker compensating downward motion, and a weaker stationary gravity wave field in a quasi-steady state than in the case of two dimensions. An examination of flow response fields for various vertical structures of convective heating indicates that stationary gravity waves above the main updraft region become strong in intensity as the height of the maximum convective heating increases. In response to the transient heating, a main updraft region extending over the heating layer no longer appears at a dissipation stage of deep convection. Instead, alternating regions of upward and downward motion with an upstream phase tilt appear.
Abstract
Convectively forced mesoscale flows in three dimensions are theoretically investigated by examining the transient response of a stably stratified atmosphere to convective heating. Solutions for the equations governing small-amplitude perturbations in a uniform basic-state wind with specified convective heating are analytically obtained using the Green function method. In the surface pulse heating case, it is explicitly shown that the vertical displacement at the center of the 3D steady heating decreases as fast as t −1 for large t. Hence, unlike in two dimensions, the steady state is approached in three dimensions. In the finite-depth steady heating case, the perturbation vertical velocity field in the stationary mode shows a main updraft region extending over the heating layer and V-shaped upward and downward motions above and below the heating layer. Including the third dimension results in a stronger updraft at an early stage, a weaker compensating downward motion, and a weaker stationary gravity wave field in a quasi-steady state than in the case of two dimensions. An examination of flow response fields for various vertical structures of convective heating indicates that stationary gravity waves above the main updraft region become strong in intensity as the height of the maximum convective heating increases. In response to the transient heating, a main updraft region extending over the heating layer no longer appears at a dissipation stage of deep convection. Instead, alternating regions of upward and downward motion with an upstream phase tilt appear.
Abstract
Convectively forced mesoscale flows in a shear flow with a critical level are theoretically investigated by obtaining analytic solutions for a hydrostatic, nonrotating, inviscid, Boussinesq airflow system. The response to surface pulse heating shows that near the center of the moving mode, the magnitude of the vertical velocity becomes constant after some time, whereas the magnitudes of the vertical displacement and perturbation horizontal velocity increase linearly with time. It is confirmed from the solutions obtained in present and previous studies that this result is valid regardless of the basic-state wind profile and dimension. The response to 3D finite-depth steady heating representing latent heating due to cumulus convection shows that, unlike in two dimensions, a low-level updraft that is necessary to sustain deep convection always occurs at the heating center regardless of the intensity of vertical wind shear and the heating depth. For deep heating across a critical level, little change occurs in the perturbation field below the critical level, although the heating top height increases. This is because downward-propagating gravity waves induced by the heating above, but not near, the critical level can hardly affect the flow response field below the critical level. When the basic-state wind backs with height, the vertex of V-shaped perturbations above the heating top points to a direction rotated a little clockwise from the basic-state wind direction. This is because the V-shaped perturbations above the heating top is induced by upward-propagating gravity waves that have passed through the layer below where the basic-state wind direction is clockwise relative to that above.
Abstract
Convectively forced mesoscale flows in a shear flow with a critical level are theoretically investigated by obtaining analytic solutions for a hydrostatic, nonrotating, inviscid, Boussinesq airflow system. The response to surface pulse heating shows that near the center of the moving mode, the magnitude of the vertical velocity becomes constant after some time, whereas the magnitudes of the vertical displacement and perturbation horizontal velocity increase linearly with time. It is confirmed from the solutions obtained in present and previous studies that this result is valid regardless of the basic-state wind profile and dimension. The response to 3D finite-depth steady heating representing latent heating due to cumulus convection shows that, unlike in two dimensions, a low-level updraft that is necessary to sustain deep convection always occurs at the heating center regardless of the intensity of vertical wind shear and the heating depth. For deep heating across a critical level, little change occurs in the perturbation field below the critical level, although the heating top height increases. This is because downward-propagating gravity waves induced by the heating above, but not near, the critical level can hardly affect the flow response field below the critical level. When the basic-state wind backs with height, the vertex of V-shaped perturbations above the heating top points to a direction rotated a little clockwise from the basic-state wind direction. This is because the V-shaped perturbations above the heating top is induced by upward-propagating gravity waves that have passed through the layer below where the basic-state wind direction is clockwise relative to that above.
Abstract
In the Weather Research and Forecasting (WRF) community, a standard model setup at a grid size smaller than 5 km excludes cumulus parameterization (CP), although it is unclear how to determine a cutoff grid size where convection permitting can be assumed adequate. Also, efforts to improve high-resolution precipitation forecasts in the range of 1–10 km (the so-called gray zone for parameterized precipitation physics) have recently been made. In this study, we attempt to statistically evaluate the skill of a gray-zone CP with a focus on the quantitative precipitation forecast (QPF) in the summertime. A WRF Model simulation with the gray-zone simplified Arakawa–Schubert (GSAS) CP at 3-km spatial resolution over East Asia is evaluated for the summer of 2013 and compared with the results from a conventional setup without CP. A statistical evaluation of the 3-month simulations shows that the GSAS demonstrates a typical distribution of the QPF skill, with high (low) scores and bias in the light (heavy) precipitation category. The WRF without CP seriously suppresses light precipitation events, but its skill for heavier categories is better. Meanwhile, a new set of precipitation data, which is simply averaged precipitation from the two simulations, demonstrates the best skill in all precipitation categories. Bearing in mind that high-resolution QPF requires essential challenges in model components, along with complexity in precipitating convection mechanisms over geographically different regions, this proposed method can serve as an alternative for improving the QPF for practical usage.
Abstract
In the Weather Research and Forecasting (WRF) community, a standard model setup at a grid size smaller than 5 km excludes cumulus parameterization (CP), although it is unclear how to determine a cutoff grid size where convection permitting can be assumed adequate. Also, efforts to improve high-resolution precipitation forecasts in the range of 1–10 km (the so-called gray zone for parameterized precipitation physics) have recently been made. In this study, we attempt to statistically evaluate the skill of a gray-zone CP with a focus on the quantitative precipitation forecast (QPF) in the summertime. A WRF Model simulation with the gray-zone simplified Arakawa–Schubert (GSAS) CP at 3-km spatial resolution over East Asia is evaluated for the summer of 2013 and compared with the results from a conventional setup without CP. A statistical evaluation of the 3-month simulations shows that the GSAS demonstrates a typical distribution of the QPF skill, with high (low) scores and bias in the light (heavy) precipitation category. The WRF without CP seriously suppresses light precipitation events, but its skill for heavier categories is better. Meanwhile, a new set of precipitation data, which is simply averaged precipitation from the two simulations, demonstrates the best skill in all precipitation categories. Bearing in mind that high-resolution QPF requires essential challenges in model components, along with complexity in precipitating convection mechanisms over geographically different regions, this proposed method can serve as an alternative for improving the QPF for practical usage.
Abstract
The Korea Institute of Atmospheric Prediction Systems (KIAPS) has developed a new global numerical weather prediction model, named the Korean Integrated Model (KIM). This paper presents the cumulus parameterization scheme (CPS) used in KIM, which originates from the simplified Arakawa–Schubert (SAS) convection scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and has undergone numerous modifications in an effort to improve the medium-range forecast skill for precipitation and large-scale fields. The modifications include the following: 1) the threshold of the trigger condition is updated to consider the dependency on the environmental relative humidity (RH) averaged over the subcloud layer in order to suppress the trigger of convection in dry low-level environments; 2) the entrainment rate is modified to increase the sensitivity to environmental humidity, so that enhanced entrainment under lower RH conditions leads to a greater decrease in the strength of the convection that develops in drier environments; 3) the autoconversion parameter from cloud condensate to convective precipitation is changed to have a temperature dependency above the freezing level; 4) the closure is modified to consider rapidly varying boundary layer forcing; 5) the effect of the convection-induced pressure gradient force in convective momentum transport is enhanced in the upper part of the convective updrafts; and 6) scale awareness that enables a mass-flux CPS to work seamlessly at various grid sizes across gray-zone resolutions is addressed. The evaluation of medium-range forecasts with the KIM CPS reveals higher forecast skill, especially over the tropics, in comparison with its original version.
Abstract
The Korea Institute of Atmospheric Prediction Systems (KIAPS) has developed a new global numerical weather prediction model, named the Korean Integrated Model (KIM). This paper presents the cumulus parameterization scheme (CPS) used in KIM, which originates from the simplified Arakawa–Schubert (SAS) convection scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and has undergone numerous modifications in an effort to improve the medium-range forecast skill for precipitation and large-scale fields. The modifications include the following: 1) the threshold of the trigger condition is updated to consider the dependency on the environmental relative humidity (RH) averaged over the subcloud layer in order to suppress the trigger of convection in dry low-level environments; 2) the entrainment rate is modified to increase the sensitivity to environmental humidity, so that enhanced entrainment under lower RH conditions leads to a greater decrease in the strength of the convection that develops in drier environments; 3) the autoconversion parameter from cloud condensate to convective precipitation is changed to have a temperature dependency above the freezing level; 4) the closure is modified to consider rapidly varying boundary layer forcing; 5) the effect of the convection-induced pressure gradient force in convective momentum transport is enhanced in the upper part of the convective updrafts; and 6) scale awareness that enables a mass-flux CPS to work seamlessly at various grid sizes across gray-zone resolutions is addressed. The evaluation of medium-range forecasts with the KIM CPS reveals higher forecast skill, especially over the tropics, in comparison with its original version.
Abstract
The impacts of urban aerosols on clouds and precipitation are investigated using a spectral (bin) microphysics cloud model. For this purpose, extensive numerical experiments with various aerosol concentrations are performed under different environmental moisture conditions. To take into account the urban heat island and urban air pollution, it is considered that there is low-level heating in the urban area and that the aerosol concentration in the urban area is higher than that in the surrounding rural area. Simulation results show that a low-level updraft induced by the urban heat island leads to the formation of a low-level cloud and then a deep convective cloud downwind of the urban area. The onset of precipitation produced by the low-level cloud is delayed at higher aerosol concentrations. This is because when the aerosol concentration is high, a narrow drop size distribution results in a suppressed collision–coalescence process and hence in late raindrop formation. However, after the deep convective cloud develops, a higher aerosol concentration generally leads to the development of a stronger convective cloud. This is mainly due to increased release of latent heat resulting from the enhanced condensation process with increasing aerosol concentration. The low collision efficiency of smaller cloud drops and the resulting stronger updraft at higher aerosol concentrations result in higher liquid water content at higher levels, leading to the enhanced riming process to produce large ice particles. The melting of a larger amount of hail leads to precipitation enhancement downwind of the urban area with increasing urban aerosol concentration in all moisture environments considered.
Abstract
The impacts of urban aerosols on clouds and precipitation are investigated using a spectral (bin) microphysics cloud model. For this purpose, extensive numerical experiments with various aerosol concentrations are performed under different environmental moisture conditions. To take into account the urban heat island and urban air pollution, it is considered that there is low-level heating in the urban area and that the aerosol concentration in the urban area is higher than that in the surrounding rural area. Simulation results show that a low-level updraft induced by the urban heat island leads to the formation of a low-level cloud and then a deep convective cloud downwind of the urban area. The onset of precipitation produced by the low-level cloud is delayed at higher aerosol concentrations. This is because when the aerosol concentration is high, a narrow drop size distribution results in a suppressed collision–coalescence process and hence in late raindrop formation. However, after the deep convective cloud develops, a higher aerosol concentration generally leads to the development of a stronger convective cloud. This is mainly due to increased release of latent heat resulting from the enhanced condensation process with increasing aerosol concentration. The low collision efficiency of smaller cloud drops and the resulting stronger updraft at higher aerosol concentrations result in higher liquid water content at higher levels, leading to the enhanced riming process to produce large ice particles. The melting of a larger amount of hail leads to precipitation enhancement downwind of the urban area with increasing urban aerosol concentration in all moisture environments considered.
Abstract
The sensitivity of a cumulus parameterization scheme (CPS) to a representation of precipitation production is examined. To do this, the parameter that determines the fraction of cloud condensate converted to precipitation in the simplified Arakawa–Schubert (SAS) convection scheme is modified following the results from a cloud-resolving simulation. While the original conversion parameter is assumed to be constant, the revised parameter includes a temperature dependency above the freezing level, which leads to less production of frozen precipitating condensate with height. The revised CPS has been evaluated for a heavy rainfall event over Korea as well as medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). The inefficient conversion of cloud condensate to convective precipitation at colder temperatures generally leads to a decrease in precipitation, especially in the category of heavy rainfall. The resultant increase of detrained moisture induces moistening and cooling at the top of clouds. A statistical evaluation of the medium-range forecasts with the revised precipitation conversion parameter shows an overall improvement of the forecast skill in precipitation and large-scale fields, indicating importance of more realistic representation of microphysical processes in CPSs.
Abstract
The sensitivity of a cumulus parameterization scheme (CPS) to a representation of precipitation production is examined. To do this, the parameter that determines the fraction of cloud condensate converted to precipitation in the simplified Arakawa–Schubert (SAS) convection scheme is modified following the results from a cloud-resolving simulation. While the original conversion parameter is assumed to be constant, the revised parameter includes a temperature dependency above the freezing level, which leads to less production of frozen precipitating condensate with height. The revised CPS has been evaluated for a heavy rainfall event over Korea as well as medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). The inefficient conversion of cloud condensate to convective precipitation at colder temperatures generally leads to a decrease in precipitation, especially in the category of heavy rainfall. The resultant increase of detrained moisture induces moistening and cooling at the top of clouds. A statistical evaluation of the medium-range forecasts with the revised precipitation conversion parameter shows an overall improvement of the forecast skill in precipitation and large-scale fields, indicating importance of more realistic representation of microphysical processes in CPSs.